Skip to main content Accessibility help
×
Home

Electro-poroelastohydrodynamics of the endothelial glycocalyx layer

  • P. P. Sumets (a1), J. E. Cater (a1), D. S. Long (a2) and R. J. Clarke (a1)

Abstract

We consider pressure-driven flow of an ion-carrying viscous Newtonian fluid through a non-uniformly shaped channel coated with a charged deformable porous layer, as a model for blood flow through microvessels that are lined with an endothelial glycocalyx layer (EGL). The EGL is negatively charged and electrically interacts with ions dissolved in the blood plasma. The focus here is on the interplay between electrochemical effects, and the pressure-driven flow through the microvessel. To analyse these effects we use triphasic mixture theory (TMT) which describes the coupled dynamics of the fluid phase, the elastic EGL, ion transport within the fluid and electric fields within the microvessel. The resulting equations are solved numerically using a coupled boundary–finite element method (BEM-FEM) scheme. However, in the physiological regime considered here, ion concentrations and electric potentials vary rapidly over a thin transitional region (Debye layer) that straddles the lumen–EGL interface, which is difficult to resolve numerically. Accordingly we analyse this region asymptotically, to determine effective jump conditions across the interface for BEM-FEM computations within the bulk EGL/lumen. Our results demonstrate that ion–EGL electrical interactions can influence the near-wall flow, causing it to become reversed. This alters the stresses exerted upon the vessel wall, which has implications for the hypothesised role of the EGL as a transmitter of mechanical signals from the blood flow to the endothelial vessel surface.

Copyright

Corresponding author

Email address for correspondence: rj.clarke@auckland.ac.nz

References

Hide All
Arkill, K. P., Neal, C. R., Mantell, J. M., Michel, C. C., Qvortrup, K., Rostgaard, J., Bates, D. O., Knupp, C. & Squire, J. M. 2012 3d reconstruction of the glycocalyx structure in mammalian capillaries using electron tomography. Microcirculation 19, 343351.
Buschmann, M. D. & Grodzinsky, A. J. 1995 A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics. Trans. ASME J. Biomech. Engng 117, 179192.
Cox, R. G. 1997 Electroviscous forces on a charged particle suspended in a flowing liquid. J. Fluid Mech. 338, 134.
Damiano, E. R., Duling, B. R., Ley, K. & Skalak, T. C. 1996 Axisymmetric pressure-driven flow of rigid pellets through a cylindrical tube lined with a deformable porous wall layer. J. Fluid Mech. 314, 163189.
Damiano, E. R. & Stace, T. M. 2002 A mechano-electrochemical model of radial deformation of the capillary glycocalyx. Biophys. J. 82 (3), 11531175.
Damiano, E. R. & Stace, T. M. 2005 Flow and deformation of the capillary glycocalyx in the wake of a leukocyte. Phys. Fluids 17, 031509.
Dean, D., Seog, J., Ortiz, C. & Grodzinsky, A. J. 2003 Molecular-level theoretical model for electrostatic interactions within polyelectrolyte brushes: applications to charged glycosaminoglycans. Langmuir 19 (13), 55265539.
Donath, E. & Voigt, A. 1986 Streaming current and streaming potential on structured surfaces. J. Colloid Interface Sci. 109 (1), 122139.
Ehlers, W. & Blome, P. 2003 A triphasic model for unsaturated soil based on the theory of porous media. Math. Comput. Model. 37, 507513.
Ehlers, W. & Bluhm, J. 2002 Porous Media: Theory, Experiments and Numerical Applications. Springer.
Ehlers, W., Karajan, N. & Markert, B. 2009 An extended biphasic model for charged hydrated tissues with application to the intervertebral disc. Biomech. Model. Mechanobiol. 8, 233251.
Frijns, A. J. H., Huyghe, J. M. & Janssen, J. D. 1997 A validation of the quadriphase mixture theory for intervertebral disc tissue. Intl J. Engng. Sci. 35, 14191429.
Hariprasad, D. S. & Secomb, T. W. 2012 Motion of red blood cells near microvesselwalls: effects of a porous wall layer. J. Fluid Mech. 705, 195212.
Holzapfel, G. A. & Ogden, R. W. 2006 Biomechanics: Trends in Modeling and Simulation. Springer.
Hou, J. S., Holmes, M. H., Lai, W. M. & Mow, V. C. 1989 Boundary conditions at cartilage-synovial fluid interface for joint lubrication and theoretical verifications. Trans. ASME J. Biomech. Engng 111 (1), 7887.
Kilic, M. S. & Bazant, M. Z. 2007 Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys. Rev. E 75, 021502.
Kolev, N. 2002 Multiphase Flow Dynamics, Vol 1: Fundamentals. Springer.
Lai, W. M., Hou, J. S. & Mow, V. C. 1991 A triphasic theory for the swelling and deformation behaviors of articular cartilage. Trans. ASME J. Biomech. Engng 113, 245258.
Landau, L. D. & Lifshitz, E. M. 1960 Electrodynamics of Continuous Media. Pergamon Press.
Lee, T. C., Long, D. S. & Clarke, R. J. 2016 Effect of endothelial glycocalyx layer redistribution upon microvessel poroelastohydrodynamics. J. Fluid Mech. 798, 812852.
Liu, M. & Yang, J. 2009 Electrokinetic effect of the endothelial glycocalyx layer on two-phase blood flow in small blood vessels. Microvasc. Res. 78, 1419.
Masliyah, J. H. & Bhattacharjee, S. 2006 Electrokinetic and Colloid Transport Phenomena. John Wiley and Sons.
Mokady, A. J., Mestel, A. J. & Winlove, C. P. 1999 Flow through a charged biopolymer layer. J. Fluid Mech. 383, 353378.
Oomens, C. W. J., De Heus, H. J., Huyghe, J. M., Nelissen, L. & Janssen, J. D. 1995 Validation of the triphasic mixture theory for a mimic of intervertebral disk tissue. Biomimetics 3, 171185.
Pries, A. R., Secomb, T. W. & Gaehtgens, P. 2000 The endothelial surface layer. Pflügers Arch. 440 (5), 653666.
Sawyer, P. N. & Stanczewski, B. 1976 Electrokinetic processes on natural and artificial blood vessels. In Blood Vessels:Problems Arising at the Borders of Natural and Artificial Blood Vessels (ed. Effert, S. & Meyer-Erkelenz, J. D.), pp. 143157. Springer.
Secomb, T. W., Hsu, R. & Pries, A. R. 1998 A model for red blood cell motion in glycocalyx-lined capillaries. Am. J. Physiol. Heart Circ. Physiol. 274 (3), H1016H1022.
Secomb, T. W., Hsu, R. & Pries, A. R. 2001 Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells. Biorheology 38 (2–3), 143150.
Sharan, M. & Popel, A. S. 2001 A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology 38, 415428.
Silberberg, A. 1991 Polyelectrolytes at the endothelial cell surface. Biophys. Chem. 41, 913.
Squire, J. M., Chew, M., Nneji, G., Neal, C., Barry, J. & Michel, C. 2001 Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J. Struct. Biol. 136 (3), 239255.
Stace, T. M. & Damiano, E. R. 2001 An electrochemical model of the transport of charged molecules through the capillary glycocalyx. Biophys. J. 80, 16701690.
Sumets, P. P., Cater, J. E., Long, D. S. & Clarke, R. J. 2015 A boundary-integral representation for biphasic mixture theory, with application to the post-capillary glycocalyx. Proc. R. Soc. Lond. A 471 (2179), doi:10.1098/rspa.2014.0955.
Tarbell, J. M. & Pahakis, M. Y. 2006 Mechanotransduction and the glycocalyx. J. Intl Med. 259 (4), 339350.
Vincent, P. E., Sherwin, S. J. & Weinberg, P. D. 2010 The effect of the endothelial glycocalyx layer on concentration polarisation of low density lipoproteins in arteries. J. Theor. Biol. 265 (1), 117.
Wei, H. H., Waters, S. L., Liu, S. Q. & Grotberg, J. B. 2003 Flow in a wavy-walled channel lined with a poroelastic layer. J. Fluid Mech. 492, 2345.
Weinbaum, S., Tarbell, J. M. & Damiano, E. R. 2007 The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Engng 9, 121167.
Yariv, E., Schnitzer, O. & Frankel, I. 2011 Streaming-potential phenomena in the thin-debye-layer limit. Part 1. General theory. J. Fluid Mech. 685, 306334.
Zhou, X., Hon, Y. C., Sun, S. & Mak, A. F. T. 2002 Numerical simulation of the steady-state deformation of a smart hydrogel under an external electric field. Smart Mater. Struct. 11, 459467.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed