Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-28T03:15:38.915Z Has data issue: false hasContentIssue false

Electrolubrication in liquid mixtures between two parallel plates

Published online by Cambridge University Press:  08 March 2024

Roni Kroll
Affiliation:
Department of Chemical Engineering, Ben-Gurion University of the Negev, Rager Street, Beer-Sheva 84105, Israel
Yoav Tsori*
Affiliation:
Department of Chemical Engineering, Ben-Gurion University of the Negev, Rager Street, Beer-Sheva 84105, Israel
*
Email address for correspondence: tsori@bgu.ac.il

Abstract

We describe theoretically ‘electrolubrication’ in liquid mixtures: the phenomenon whereby an electric field applied transverse to the confining surfaces leads to concentration gradients that alter the flow profile significantly. When the more polar liquid is the less viscous one, the stress in the liquid falls on two electric-field-induced thin lubrication layers. The thickness of the lubrication layer depends on the Debye length and the mixture correlation length. For the simple case of two parallel and infinite plates, we calculate explicitly the liquid velocity profile and integrated flux. The maximum liquid velocity and flux can be increased by a factor $\alpha$, of order 10–100 or even more. For a binary mixture of water and a cosolvent, with viscosities $\eta _w$ and $\eta _{cs}$, respectively, $\alpha$ increases monotonically with inter-plate potential $V$ and average ion content, and is large if the ratio $\eta _{cs}/\eta _w$ is large.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrade, E.N. da C. & Dodd, C. 1939 Effect of an electric field on the viscosity of liquids. Nature 144 (3637), 117118.CrossRefGoogle Scholar
Andrade, E.N. da C. & Dodd, C. 1946 The effect of an electric field on the viscosity of liquids. Proc. R. Soc. Lond. A 187 (1010), 296337.Google Scholar
Borukhov, I., Andelman, D. & Orland, H. 1997 Steric effects in electrolytes: a modified Poisson–Boltzmann equation. Phys. Rev. Lett. 79 (3), 435.CrossRefGoogle Scholar
Bresme, F., Kornyshev, A.A., Perkin, S. & Urbakh, M. 2022 Electrotunable friction with ionic liquid lubricants. Nat. Mater. 21 (8), 848858.CrossRefGoogle ScholarPubMed
Fajardo, O.Y., Bresme, F., Kornyshev, A.A. & Urbakh, M. 2017 Water in ionic liquid lubricants: friend and foe. ACS Nano 11 (7), 68256831.CrossRefGoogle ScholarPubMed
Gropper, D., Wang, L. & Harvey, T.J. 2016 Hydrodynamic lubrication of textured surfaces: a review of modeling techniques and key findings. Tribol. Intl 94, 509529.CrossRefGoogle Scholar
Hao, T. 2001 Electrorheological fluids. Adv. Mater. 13 (24), 18471857.3.0.CO;2-A>CrossRefGoogle Scholar
Hu, Y.-Z. & Granick, S. 1998 Microscopic study of thin film lubrication and its contributions to macroscopic tribology. Tribol. Lett. 5, 8188.CrossRefGoogle Scholar
Klein, J. 1996 Shear, friction, and lubrication forces between polymer-bearing surfaces. Annu. Rev. Mater. Sci. 26 (1), 581612.CrossRefGoogle Scholar
Lugt, P.M. 2009 A review on grease lubrication in rolling bearings. Tribol. Trans. 52 (4), 470480.CrossRefGoogle Scholar
Marcus, Y. 1988 Preferential solvation of ions in mixed solvents. Part 2. The solvent composition near the ion. J. Chem. Soc. Faraday Trans. 84 (5), 14651473.CrossRefGoogle Scholar
Marsh, K.N., Boxall, J.A. & Lichtenthaler, R. 2004 Room temperature ionic liquids and their mixtures – a review. Fluid Phase Equilib. 219 (1), 9398.CrossRefGoogle Scholar
Pivnic, K., Bresme, F., Kornyshev, A.A. & Urbakh, M. 2020 Electrotunable friction in diluted room temperature ionic liquids: implications for nanotribology. ACS Appl. Nano Mater. 3 (11), 1070810719.CrossRefGoogle Scholar
Pivnic, K., de Souza, J.P., Kornyshev, A.A., Urbakh, M. & Bazant, M.Z. 2023 Orientational ordering in nano-confined polar liquids. Nano Lett. 23 (12), 55485554.CrossRefGoogle ScholarPubMed
Samin, S. & van Roij, R. 2017 Interplay between adsorption and hydrodynamics in nanochannels: towards tunable membranes. Phys. Rev. Lett. 118 (1), 014502.CrossRefGoogle ScholarPubMed
Samin, S. & Tsori, Y. 2012 The interaction between colloids in polar mixtures above $t_c$. J. Chem. Phys. 136 (15), 154908.CrossRefGoogle Scholar
Samin, S. & Tsori, Y. 2013 Stabilization of charged and neutral colloids in salty mixtures. J. Chem. Phys. 139 (24), 244905.CrossRefGoogle ScholarPubMed
Samin, S. & Tsori, Y. 2016 Reversible pore gating in aqueous mixtures via external potential. Colloid Interface Sci. Commun. 12, 912.CrossRefGoogle Scholar
Sweeney, J., Hausen, F., Hayes, R., Webber, G.B., Endres, F., Rutland, M.W., Bennewitz, R. & Atkin, R. 2012 Control of nanoscale friction on gold in an ionic liquid by a potential-dependent ionic lubricant layer. Phys. Rev. Lett. 109 (15), 155502.CrossRefGoogle Scholar
Terwagne, D., Brojan, M. & Reis, P.M. 2014 Smart morphable surfaces for aerodynamic drag control. Adv. Mater. 26 (38), 66086611.CrossRefGoogle ScholarPubMed
Tsori, Y. 2023 Electrolubrication in flowing liquid mixtures. Phys. Fluids 35 (7), 073306.CrossRefGoogle Scholar
Tsori, Y. & Leibler, L. 2007 Phase-separation in ion-containing mixtures in electric fields. Proc. Natl Acad. Sci. USA 104 (18), 73487350.CrossRefGoogle ScholarPubMed
Tsori, Y., Tournilhac, F. & Leibler, L. 2004 Demixing in simple fluids induced by electric field gradients. Nature 430 (6999), 544547.CrossRefGoogle ScholarPubMed