Skip to main content Accessibility help
×
Home

Electrified viscous thin film flow over topography

  • D. TSELUIKO (a1), M. G. BLYTH (a1), D. T. PAPAGEORGIOU (a2) and J.-M. VANDEN-BROECK (a1)

Abstract

The gravity-driven flow of a liquid film down an inclined wall with periodic indentations in the presence of a normal electric field is investigated. The film is assumed to be a perfect conductor, and the bounding region of air above the film is taken to be a perfect dielectric. In particular, the interaction between the electric field and the topography is examined by predicting the shape of the film surface under steady conditions. A nonlinear, non-local evolution equation for the thickness of the liquid film is derived using a long-wave asymptotic analysis. Steady solutions are computed for flow into a rectangular trench and over a rectangular mound, whose shapes are approximated with smooth functions. The limiting behaviour of the film profile as the steepness of the wall geometry is increased is discussed. Using substantial numerical evidence, it is established that as the topography steepness increases towards rectangular steps, trenches, or mounds, the interfacial slope remains bounded, and the film does not touch the wall. In the absence of an electric field, the film develops a capillary ridge above a downward step and a slight depression in front of an upward step. It is demonstrated how an electric field may be used to completely eliminate the capillary ridge at a downward step. In contrast, imposing an electric field leads to the creation of a free-surface ridge at an upward step. The effect of the electric field on film flow into relatively narrow trenches, over relatively narrow mounds, and down slightly inclined substrates is also considered.

Copyright

References

Hide All
Abdelouhab, A., Bona, J. L., Felland, M. & Saut, J.-C. 1989 Nonlocal models for nonlinear dispersive waves. Physica D 40, 360392.
Alekseenko, S. V., Nakoryakov, V. E. & Pokusaev, B. G. 1985 Wave formation on a vertical falling liquid film. AIChE J. 31, 14461460.
Argyriadi, K., Vlachogiannis, M. & Bontozoglou, V. 2006 Experimental study of inclined film flow along periodic corrugations: The effect of wall steepness. Phys. Fluids 18, 012102.
Bankoff, S. G., Griffing, E. M. & Schluter, R. A. 2002 Use of an electric field in an electrostatic liquid film radiator. Ann. N.Y. Acad. Sci. 974, 19.
Bankoff, S. G., Miksis, M. J. & Gwinner, H., Kim, R. 1994 Design considerations for the rotating electrostatic liquid-film radiator. Nucl. Engng Des. 149, 441447.
Benjamin, T. B. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2, 554574.
Benney, D. J. 1966 Long waves on liquid films. J. Math. Phys. 45, 150155.
Bertozzi, A. L. & Brenner, M. P. 1997 Linear stability and transient growth in driven contact lines. Phys. Fluids 9, 530539.
Bielarz, C. & Kalliadasis, S. 2003 Time-dependent free-surface thin film flows over topography. Phys. Fluids 15 (9), 25122524.
Davis, J. M. & Troian, S. M. 2005 Generalized linear stability of noninertial coating flows over topographical features. Phys. Fluids 17, 072103.
Decré, M. M. J. & Baret, J. C. 2003 Gravity-driven flows of low viscosity liquids over two-dimensional topographies. J. Fluid Mech. 487, 147166.
Diez, J. A. & Kondic, L. 2001 Contact line instabilities of thin liquid films. Phys. Rev. Lett. 86, 632635.
Fernandez-Parent, C., Lammers, J. H. & Decré, M. M. J. 1998 Flow of a gravity driven thin liquid film over one-dimensional topographies. Phillips Research Unclassified Report No. UR 823/28.
Gaskell, P. H., Jimack, P. K., Sellier, M. & Thompson, H. M. 2006 Flow of evaporating, gravity-driven thin liquid films over topography. Phys. Fluids 18, 013601.
Gaskell, P. H., Jimack, P. K., Sellier, M., Thompson, H. M. & Wilson, M. C. T. 2004 Gravity-driven flow of continuous thin liquid films on non-porous substrates with topography. J. Fluid Mech. 509, 253280.
Gonzalez, A. & Castellanos, A. 1996 Nonlinear electrohydrodynamic waves on films falling down an inclined plane. Phys. Rev. E 53, 35733578.
Griffing, E. M., Bankoff, S. G., Miksis, M. J. & Schluter, R. A. 2006 Electrohydrodynamics of thin flowing films. J. Fluids Engng 128.
Gu, F., Liu, C. J., Yuan, X. G. & Yu, G. C. 2004 CFD simulation of liquid film flow on inclined plates. Chem. Engng Technol. 27, 10991104.
Howell, P. D. 2003 Surface-tension-driven flow on a moving curved surface. J. Engng Math. 45, 283308.
Jensen, O. E., Chini, G. P. & King, J. R. 2004 Thin-film flows near isolated humps and into corners. J. Engng Math. 50, 289309.
Kalliadasis, S., Bielarz, C. & Homsy, G. M. 2000 Steady free-surface thin film flows over topography. Phys. Fluids 12, 18891898.
Kalliadasis, S. & Homsy, G. M. 2001 Stability of free-surface thin-film flows over topography. J. Fluid Mech. 448, 387410.
Kim, H., Bankoff, S. G. & Miksis, M. J. 1992 The effect of an electrostatic field on film flow down an inclined plane. Phys. Fluids A 4, 21172130.
Kim, H., Bankoff, S. G. & Miksis, M. J. 1994 The cylindrical electrostatic liquid-film radiator for heat rejection in space. Trans. ASME: J. Heat Transfer 116, 986992.
Kistler, S. F. & Schweizer, P. M. 1997 Liquid Film Coating: Scientific Principles and their Technological Implications. Chapman & Hall.
Lin, S. P. 1974 Finite amplitude sideband stability of a viscous film. J. Fluid Mech. 63, 417429.
Lister, J. R. 1990 Buoyancy-driven fluid fracture: similarity solutions for the horizontal and vertical propagation of fluid-filled cracks. J. Fluid Mech. 217, 213239.
Liu, J. & Gollub, J. P. 1994 Solitary wave dynamics of film flows. Phys. Fluids 6, 17021712.
Liu, J., Paul, J. D. & Gollub, J. P. 1993 Measurements of the primary instabilities of film flows. J. Fluid Mech. 250, 69101.
Malamataris, N. A. & Bontozoglou, V. 1999 Computer aided analysis of viscous film flow along an inclined wavy wall. J. Comput. Phys. 154, 372392.
Malamataris, N. A., Vlachogiannis, M. & Bontozoglou, V. 2002 Solitary waves on inclined films: Flow structure and binary interactions. Phys. Fluids 14, 10821094.
Mazouchi, A. & Homsy, G. M. 2001 Free surface Stokes flow over topography. Phys. Fluids 13 (10), 27512761.
Messé, S. & Decré, M. M. J. 1997 Experimental study of a gravity driven water film flowing down inclined plates with different patterns. Phillips Research Unclassified Report No. NL-UR 030/97.
Papageorgiou, D. T. & Petropoulos, P. G. 2004 Generation of interfacial instabilities in charged electrified viscous liquid films. J. Engng Maths 50, 223240.
Papageorgiou, D. T. & Vanden-Broeck, J.-M. 2004 Large-amplitude capillary waves in electrified fluid sheets. J. Fluid. Mech. 508, 7188.
Pozrikidis, C. 1988 The flow of a liquid film along a periodic wall. J. Fluid Mech. 188, 275300.
Ramaswamy, B., Chippada, S. & Joo, S. W. 1996 A full-scale numerical study of interfacial instabilities in thin-film flows. J. Fluid Mech. 325, 163194.
Roy, R. V., Roberts, A. J. & Simpson, M. E. 2002 A lubrication model of coating flows over a curved substrate in space. J. Fluid Mech. 454, 235261.
Schwartz, L. W. & Weidner, D. E. 1995 Modelling of coating flows on curved surfaces. J. Engng Math. 29, 91103.
Serifi, K., Malamataris, N. A. & Bontozoglou, V. 2004 Transient flow and heat transfer phenomena in inclined wavy films. Intl J. Therm. Sci. 43, 761767.
Shetty, S. & Cerro, R. L. 1993 Flow of a thin film over a periodic surface. Intl J. Multiphase Flow 19, 10131027.
Spence, D. A., Sharp, P. W. & Turcotte, D. L. 1987 Buoyancy-driven crack propagation: a mechanism for magma migration. J. Fluid Mech. 174, 135153.
Stillwagon, L. E. & Larson, R. G. 1988 Fundamentals of topographic substrate leveling. J. Appl. Phys. 63, 52515258.
Stillwagon, L. E. & Larson, R. G. 1990 Leveling of thin films over uneven substrates during spin coating. Phys. Fluids A 2, 19371944.
Stocker, R. & Hosoi, A. E. 2005 Lubrication in a corner. J. Fluid Mech. 544, 353377.
Tougou, H. 1978 Long waves on a film flow of a viscous fluid down an inclined uneven wall. J. Phys. Soc. Japan 44, 10141019.
Trifonov, Yu. Ya. 1999 Viscous liquid film flows over a periodic surface. Intl J. Multiphase Flow 24, 11391161.
Tseluiko, D., Blyth, M. G., Papageorgiou, D. T. & Vanden-Broeck, J.-M. 2008 Effect of an electric field on the creeping flow of a liquid film down a corrugated wall. (Submitted).
Tseluiko, D. & Papageorgiou, D. T. 2006 Wave evolution on electrified falling films. J. Fluid Mech. 556, 361386.
Vlachogiannis, M. & Bontozoglou, V. 2002 Experiments on laminar film flow along a periodic wall. J. Fluid Mech. 457, 133156.
Wang, C. Y. 1981 Liquid film flowing slowly down a wavy incline. AIChE J 27, 207212.
Wang, C. Y. 1984 Thin film flowing down a curved surface. Z. Angew. Math. Phys. 35, 532544.
Wierschem, A. & Aksel, N. 2004 a Hydraulic jumps and standing waves in gravity-driven flows of viscous liquids in wavy open channels. Phys. Fluids 16, 38683877.
Wierschem, A. & Aksel, N. 2004 b Influence of inertia on eddies created in films creeping over strongly undulated substrates. Phys. Fluids 16, 45664574.
Wierschem, A., Scholle, M. & Aksel, N. 2003 Vortices in film flow over strongly undulated bottom profiles at low Reynolds numbers. Phys. Fluids 15, 426435.
Yih, C.-H. 1963 Stability of liquid flow down an inclined plane. Phys. Fluids 6, 321334.
Yoshimura, P. N., Nosoko, T. & Nagata, T. 1996 Enhancement of mass transfer into a falling laminar liquid film by two-dimensional surface waves: Some experimental observations and modeling. Chem. Engng Sci. 51, 12311240.
Zhao, L. & Cerro, R. L. 1992 Experimental characterization of viscous film flows over complex surfaces. Intl J. Multiphase Flow 18, 495516.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Electrified viscous thin film flow over topography

  • D. TSELUIKO (a1), M. G. BLYTH (a1), D. T. PAPAGEORGIOU (a2) and J.-M. VANDEN-BROECK (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed