Skip to main content Accessibility help

Elasto-capillary coalescence of multiple parallel sheets

  • A. D. Gat (a1) and M. Gharib (a1)


We analyse two-dimensional clamped parallel elastic sheets which are partially immersed in liquid as a model for elasto-capillary coalescence. In the existing literature this problem is studied via minimal energy analysis of capillary and elastic energies of the post-coalescence state, yielding the maximal stable post-coalescence bundle size. Utilizing modal stability analysis and asymptotic analysis, we studied the stability of the configuration before the coalescence occurred. Our analysis revealed previously unreported relations between viscous forces, body forces, and the instability yielding the coalescence, thus undermining a common assumption that coalescence will occur as long as it will not create a bundle larger than the maximal stable post-coalesced size. A mathematical description of the process creating the hierarchical coalescence structure was obtained and yielded that the mean number of sheets per coalesced region is limited to the subset ${2}^{N} $ where $N$ is the set of natural numbers. Our theoretical results were illustrated by experiments and good agreement with the theoretical predictions was observed.


Corresponding author

Email address for correspondence:


Hide All
Antkowiak, A., Audoly, B., Josserand, C., Neukirch, S. & Rivetti, M. 2011 Instant fabrication and selection of folded structures using drop impact. Proc. Natl Acad. Sci. 108, 1040010404.
Aristoff, J. M., Duprat, C. & Stone, H. A. 2011 Elastocapillary imbibition. Intl J. Non-Linear Mech. 46, 648656.
Bico, J., Roman, B., Moulin, L. & Boudaoud, A. 2004 Elastocapillary coalescence in wet hair. Nature 432, 690.
Boudaoud, A., Bico, J. & Roman, B. 2007 Elastocapillary coalescence: aggregation and fragmentation with a maximal size. Phys. Rev. E 76, 060102.
Chandra, D. & Yang, S. 2010 Stability of high-aspect-ratio micropillar arrays against adhesive and capillary forces. Acc. Chem. Res. 43, 10801091.
Chandra, D., Yang, S., Soshinsky, A. A. & Gambogi, R. J. 2009 Biomimetic ultrathin whitening by capillary-force-induced random clustering of hydrogel micropillar arrays. ACS Appl. Mater. Interfaces 1, 16981704.
Chiodi, F., Roman, B. & Bico, J. 2010 Piercing an interface with a brush: Collaborative stiffening. Europhys. Lett. 90, 044006.
De Gennes, P. G., Brochard-Wyart, F., Quéré, D., Reisinger, A. & Widom, B. 2004 Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer.
De Volder, M., Tawfick, S. H., Park, S. J., Copic, D., Zhao, Z., Lu, W. & Hart, A. J. 2010 Diverse 3D microarchitectures made by capillary forming of carbon nanotubes. Adv. Mater. 22, 43844389.
De Volder, M. F. L., Park, S. J., Tawfick, S. H., Vidaud, D. O. & Hart, A. J. 2011 Fabrication and electrical integration of robust carbon nanotube micropillars by self-directed elastocapillary densification. J. Micromech. Microengng 21, 045033.
Duan, H. & Berggren, K. K. 2010 Directed self-assembly at the 10 nm scale by using capillary force-induced nanocohesion. Nano Lett. 10, 37103716.
Duprat, C., Aristoff, J. M. & Stone, H. A. 2011 Dynamics of elastocapillary rise. J. Fluid Mech. 679, 641654.
Duprat, C., Protire, S., Beebe, A. Y. & Stone, H. A. 2012 Wetting of flexible fibre arrays. Nature 482, 510513.
Elwenspoek, M., Abelmann, L., Berenschot, E., van Honschoten, J., Jansen, H. & Tas, N. 2010 Self-assembly of (sub-)micron particles into supermaterials. J. Micromech. Microengng 20, 064001.
Gat, A., Navaz, H. & Gharib, M. 2011 Dynamics of freely moving plates connected by a shallow liquid bridge. Phys. Fluids 23 (9), 097101+.
Huang, X., Zhou, J., Sansom, E., Gharib, M. & Haur, S. C. 2007 Inherent opening controlled pattern formation in carbon nanotube arrays. Nanotechnology 18, 305301.
Journet, C., Moulinet, S., Ybert, C., Purcell, S. T. & Bocquet, L. 2005 Contact angle measurements on superhydrophobic carbon nanotube forests: effect of fluid pressure. Europhys. Lett. 71 (1), 104109.
Kang, S. H., Wu, N., Grinthal, A. & Aizenberg, J. 2011 Meniscus lithography: evapouration-induced self-organization of pillar arrays into moir patterns. Phys. Rev. Lett. 107, 177802.
Kim, H.-Y. & Mahadevan, L. 2006 Capillary rise between elastic sheets. J. Fluid Mech. 548, 141150.
Leal, G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge Series in Chemical Engineering. Cambridge University Press.
Liu, J.-L., Feng, X.-Q., Xia, R. & Zhao, H.-P. 2007 Hierarchical capillary adhesion of microcantilevers or hairs. J. Phys. D: Appl. Phys. 40, 55645570.
Pineirua, M., Bico, J. & Roman, B. 2010 Capillary origami controlled by an electric field. Soft Matt. 6, 44914496.
Pokroy, B, Kang, S. H., Mahadevan, L. & Aizenberg, J. 2009 Self-organization of a mesoscale bristle into ordered, hierarchical helical assemblies. Science 323, 237240.
Py, C., Bastien, R., Bico, J., Roman, B. & Boudaoud, A. 2007a 3D aggregation of wet fibres. Europhys. Lett. 77, 44005.
Py, C., Reverdy, P., Doppler, L., Bico, J., Roman, B. & Baroud, C. N. 2007b Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys. Rev. Lett. 98, 156103.
Sikalo, S., Tropea, C. & Ganic, E. 2005 Dynamic wetting angle of a spreading droplet. Exp. Therm. Fluid Sci. 29, 795.
Taroni, M. & Vella, D. 2012 Multiple equilibria in a simple elastocapillary system. J. Fluid Mech. 712, 273294.
Zhao, Y.-P. & Fan, J.-G. 2006 Clusters of bundled nanorods in nanocarpet effect. Appl. Phys. Lett. 88, 103123.
Zhao, Z., Tawfick, S. H., Park, S. J., De Volder, M., Hart, A. J. & Lu, W. 2010 Bending of nanoscale filament assemblies by elastocapillary densification. Phys. Rev. E 82, 041605.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Elasto-capillary coalescence of multiple parallel sheets

  • A. D. Gat (a1) and M. Gharib (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed