Skip to main content Accessibility help

Effects of geometry on resistance in elliptical pipe flows

  • J. G. Williams (a1), B. W. Turney (a2), D. E. Moulton (a1) and S. L. Waters (a1)


This paper considers the significant role of cross-sectional geometry on resistance in co-axial pipe flows. We consider an axially flowing viscous fluid in between two long and thin elliptical coaxial cylinders, one inside the other. The outer cylinder is stationary, while the inner cylinder (rod) is free to move. The rod poses a resistance to the axial flow, while the viscous fluid poses a resistance to any motion of the rod. We show that the equations for flow in the axial direction – driven by a prescribed flux – and for flow within the cross-section of the domain – driven by the motion of the rod – decouple in the asymptotic limit of small cylinder aspect ratio into axial Poiseuille flow and transverse Stokes flow, respectively. The objective of this paper is to calculate numerically the axial and cross-sectional resistances and to determine their dependence on cross-sectional geometry – i.e. rod position and the ellipticities of the rod and bounding cylinder. We characterise axial resistance, first for three reduced parameter spaces that have not been fully analysed in the literature: (i) a circle in an ellipse, (ii) an ellipse in a circle and (iii) an ellipse in an ellipse of equal eccentricity and orientation, before extending our geometric parameter space to determine the overall optimal geometry to minimise axial flow resistance for fixed cross-sectional area. Cross-sectional resistance is characterised via coefficients in a Stokes resistance matrix and we highlight the interdependent effects of cross-sectional ellipticity and boundary interactions.


Corresponding author

Email address for correspondence:


Hide All
Alnaes, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E. & Wells, G. N. 2015 The FEniCS Project Version 1.5. Arch. Numer. Softw. 3 (100), 923.
Bergman, H. 1981 The Ureter, 2nd edn. Springer.10.1007/978-1-4612-5907-7
Brenner, H. 1962a Effect of finite boundaries on the Stokes resistance of an arbitrary particle. J. Fluid Mech. 12 (1), 3548.10.1017/S0022112062000026
Brenner, H. 1962b Effect of finite boundaries on the Stokes resistance of an arbitray particle. Part 2. Asymmetrical orientations. J. Fluid Mech. 12 (1), 3548.
Brenner, H. 1962c The Stokes resistance of an arbitrary particle. Chem. Engng Sci. 18, 125.
Brenner, H. 1963 The Stokes resistance of an arbitrary particle II (an extension). Chem. Engng Sci. 19 (10), 599629.
Būtaitė, U. G., Gibson, G. M., Ho, Y.-L. D., Taverne, M., Taylor, J. M. & Phillips, D. B. 2019 Indirect optical trapping using light driven micro-rotors for reconfigurable hydrodynamic manipulation. Nat. Commun. 10 (1), 1215.10.1038/s41467-019-08968-7
Casey, J.1893 A treatise on the analytical geometry of the point, line, circle, and conic sections. 2nd edn. Printed at the University Press by Ponsonby and Weldrick.
Chwang, A. T. & Wu, T. Y.-T. 1975 Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows. J. Fluid Mech. 67, 787815.
Cox, S. M. & Finn, M. D. 2007 Two-dimensional Stokes flow driven by elliptical paddles. Phys. Fluids 19, 113102.
Dvinsky, A. S. & Popel, A. S. 1987 Motion of a rigid cylinder between parallel plate in stokes flow. Part I. Motion in a quiescent fluid and sedimentation. Comput. Fluids 15 (4), 391404.
Ebrahim, N. H., El-khatib, N. & Awang, M. 2013 Numerical solution of power-law fluid flow through eccentric annular geometry. Am. J. Numer. Anal. 1, 17.
Etayo, F. & Gonzalez-Vega, L. 2006 A new approach to characterizing the relative position of two ellipses depending on one parameter. Comput.-Aided Geom. Des. 23, 324350.
Finn, M. D. & Cox, S. M. 2001 Stokes flow in a mixer with changing geometry. J. Engng Maths 41, 7599.
Frazer, R. A. 1926 On the motion of cylinder in a viscous fluid. Phil. Trans. R. Soc. Lond. A.
Hackborn, W. W. 1991 Separation in a two-dimensional Stokes flow inside an elliptic cylinder. J. Engng Maths 25, 1322.
Heil, M. & Hazel, A. 2006 Oomph-lib: an object-oriented multi-physics finite-element library. In Fluid–Structure Interaction (ed. Schäfer, M. & Bungartz, H.-J.), pp. 1949. Springer.
Heyda, J. F. 1959 A green’s function solution for the case of laminar incompressible flow between non-concentric circular cylinders. J. Franklin Inst. 267 (1), 2534.
Hinch, E. J. 1972 Notes on the symmetries of certain material tensors for a particle in Stokes flow. J. Fluid Mech. 54, 423425.
Ishikawa, T., Simmonds, M. P. & Pedley, T. J. 2006 Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568, 119160.
Jeffrey, D. J. & Onishi, Y. 1981 The slow motion of a cylinder next to a plane wall. Q. J. Mech. Appl. Maths 34, 129137.10.1093/qjmam/34.2.129
Jeffrey, G. B. 1922 The rotation of two circular cylinders in a viscous fluid. Phil. Trans. R. Soc. Lond. A 101, 169174.
Lamb, H. 1916 Hydrodynamics. Cambridge University Press.
Lauga, E. & Powers, T. R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601.
Lee, S. H. & Leal, L. G. 1986 Low-Reynolds-number flow past cylindrical bodies of arbitrary cross-sectional shape. J. Fluid Mech. 164, 401427.
MacDonald, D. A. 1982 Fully developed incompressible flow between non-coaxial circular cylinders. Z. Angew. Math. Phys. 33 (6), 737751.
Merlen, A. & Frankiewicz, C. 2011 Cylinder rolling on a wall at low Reynolds numbers. J. Fluid Mech. 685, 461494.
Oratis, A. T., Subasic, J. J., Hernandez, N., Bird, J. C. & Eisner, B. H. 2018 A simple fluid dynamic model of renal pelvis pressures during ureteroscopic kidney stone treatment. PLoS ONE 13 (11), 0208209.
Piercy, N. A. V., Hooper, M. S. & Winny, H. F. 1933 Viscous flow through pipes with cores. Lond. Edinb. Dublin Phil. Mag. J. Sci. 15 (99), 647676.
Ranger, K. B. 1994 Research note on the steady Poiseuille flow through pipes with multiple connected cross sections. Phys. Fluids 6, 22242226.
Ranger, K. B. 1996 Volumetric flux rate enhancement and reduction in conical viscous flows with multiply connected cross sections. Chem. Engng Commun. 148–150, 143160.
Redberger, P. J. 1962 Axial laminar flow in a circular pipe containing a cixed eccentric core. Can. J. Chem. Engng 40, 148151.
Saatdjian, E., Midoux, N. & André, J. C. 1994 On the solution of Stokes’ equations between confocal ellipses. Phys. Fluids 6, 38333846.
Sastry, U. A. 1964 Viscous flow through tubes of doubly connected regions. Indian J. Pure Appl. Phys. 3, 230232.
Seddon, J. R. T. & Mullin, T. 2006 Reverse rotation of a cylinder near a wall. Phys. Fluids 18 (4), 041703.
Shewchuk, J. R. 1996 Triangle: engineering a 2D quality mesh generator and Delaunay triangulator. In Applied Computational Geometry: Towards Geometric Engineering, pp. 203222.
Shivakumar, P. N. 1973 Viscous flow in pipes whose cross-sections are doubly connected regions. Appl. Sci. Res. 27, 355365.10.1007/BF00382498
Shivakumar, P. N. & Chuanxiang, J. 1993 On the Poisson’s equation for doubly connected regions. Can. Appl. Maths Q. 1 (4), 555567.
Slezkin, N. A. 1955 Dynamics of a Viscous Incompressible Fluid. Gostehizdat.
Snyder, W. T. & Goldstein, G. A. 1965 An analysis of fully developed laminar flow in an eccentric annulus. AIChE J. 11, 462467.
Wannier, G. H. 1950 A contribution to the hydrodynamics of lubrication. Q. Appl. Maths 8, 132.
Williams, J. G., Turney, B. W., Rauniyar, N. P., Harrah, T. P., Waters, S. L. & Moulton, D. E. 2019a The fluid mechanics of ureteroscope irrigation. J. Endourol. 33 (1), 2834.
Williams, J. G., Waters, S. L., Moulton, D. E., Rouse, L. & Turney, B. W. 2019b A lumped parameter model for kidney pressure during stone removal. IMA J. Appl. Maths (submitted).
Wilson, W. T. & Preminger, G. M. 1990 Intrarenal pressures generated during flexible deflectable ureterorenoscopy. J. Endourol. 4 (2), 135141.
Yang, J., Wolgemuth, C. W. & Huber, G. 2013 Force and torque on a cylinder rotating in a narrow gap at low Reynolds number: scaling and lubrication analyses. Phys. Fluids 25, 051901.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Effects of geometry on resistance in elliptical pipe flows

  • J. G. Williams (a1), B. W. Turney (a2), D. E. Moulton (a1) and S. L. Waters (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.