Skip to main content Accessibility help

The effect of velocity shear on dynamo action due to rotating convection

  • D. W. Hughes (a1) and M. R. E. Proctor (a2)


Recent numerical simulations of dynamo action resulting from rotating convection have revealed some serious problems in applying the standard picture of mean field electrodynamics at high values of the magnetic Reynolds number, and have thereby underlined the difficulties in large-scale magnetic field generation in this regime. Here we consider kinematic dynamo processes in a rotating convective layer of Boussinesq fluid with the additional influence of a large-scale horizontal velocity shear. Incorporating the shear flow enhances the dynamo growth rate and also leads to the generation of significant magnetic fields on large scales. By the technique of spectral filtering, we analyse the modes in the velocity that are principally responsible for dynamo action, and show that the magnetic field resulting from the full flow relies crucially on a range of scales in the velocity field. Filtering the flow to provide a true separation of scales between the shear and the convective flow also leads to dynamo action; however, the magnetic field in this case has a very different structure from that generated by the full velocity field. We also show that the nature of the dynamo action is broadly similar irrespective of whether the flow in the absence of shear can support dynamo action.


Corresponding author

Email address for correspondence:


Hide All
Brandenburg, A. 2001 The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence. Astrophys. J. 550, 824840.
Cattaneo, F. 1999 On the origin of magnetic fields in the quiet photosphere. Astrophys. J. 515, L39–L42.
Cattaneo, F., Emonet, T. & Weiss, N. O. 2003 On the interaction between convection and magnetic fields. Astrophys. J. 588, 11831198.
Cattaneo, F. & Hughes, D. W. 1996 Nonlinear saturation of the turbulent $\alpha $ -effect. Phys. Rev. E 54, 45324535.
Cattaneo, F. & Hughes, D. W. 2006 Dynamo action in a rotating convective layer. J. Fluid Mech. 553, 401418.
Cattaneo, F., Hughes, D. W. & Thelen, J.-C. 2002 The nonlinear properties of a large-scale dynamo driven by helical forcing. J. Fluid Mech. 456, 219237.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon Press.
Childress, S. & Soward, A. M. 1972 Convection driven hydromagnetic dynamo. Phys. Rev. Lett. 29, 837839.
Cox, S. M. 1998 Rotating convection in a shear flow. Proc. R. Soc. Lond. A 454, 16991717.
Hathaway, D. H. & Somerville, R. C. J. 1983 Three-dimensional simulation of convection in layers with tilted rotation vectors. J. Fluid Mech. 126, 7589.
Hathaway, D. H. & Somerville, R. C. J. 1986 Nonlinear interactions between convection, rotation and flows with vertical shear. J. Fluid Mech. 164, 91105.
Hathaway, D. H. & Somerville, R. C. J. 1987 Thermal convection in a rotating shear flow. Geophys. Astrophys. Fluid Dyn. 38, 4368.
Hathaway, D. H., Toomre, J. & Gilman, P. A. 1980 Convective instability when the temperature gradient and rotation vector are oblique to gravity. II. Real fluids with effects of diffusion. Geophys. Astrophys. Fluid Dyn. 15, 737.
Heinemann, T., McWilliams, J. C. & Schekochhin, A. A. 2011 Large-scale magnetic field generation by randomly forced shearing waves. Phys. Rev. Lett. 107, 255004.
Hughes, D. W. & Cattaneo, F. 2008 The alpha-effect in rotating convection: size matters. J. Fluid Mech. 594, 445461.
Hughes, D. W. & Proctor, M. R. E. 2009 Large-scale dynamo action driven by velocity shear and rotating convection. Phys. Rev. Lett. 102, 044501.
Hughes, D. W. & Proctor, M. R. E. 2010 Turbulent magnetic diffusivity tensor for time-dependent mean fields. Phys. Rev. Lett. 104, 024503.
Hughes, D. W., Proctor, M. R. E. & Cattaneo, F. 2011 The $\alpha $ -effect in rotating convection: a comparison of numerical simulations. Mon. Not. R. Astron. Soc. 414, L45–L49.
Jones, C. A. & Roberts, P. H. 2000 Convection-driven dynamos in a rotating plane layer. J. Fluid Mech. 404, 311343.
Käpylä, P. J., Korpi, M. J. & Brandenburg, A. 2010 The $\alpha $ -effect in rotating convection with sinusoidal shear. Mon. Not. R. Astron. Soc. 402, 14581466.
Krause, F. & Rädler, K.-H. 1980 Mean-Field Magnetohydrodynamics and Dynamo Theory. Pergamon.
Kropp, M. & Busse, F. H. 1991 Thermal convection in differentially rotating systems. Geophys. Astrophys. Fluid Dyn. 61, 127148.
Matthews, P. & Cox, S. 1997 Linear stability of rotating convection in an imposed shear flow. J. Fluid Mech. 350, 271293.
Moffatt, H. K. 1978 Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press.
Obukhov, A. M. 1941 Spectral energy distribution in a turbulent flow. Izv. Akad. Nauk SSSR Geogr. Geofiz. 5, 453466.
Ossendrijver, M., Stix, M., Brandenburg, A. & Rüdiger, G. 2002 Magnetoconvection and dynamo coefficients. II. Field-direction dependent pumping of magnetic field. Astron. Astrophys. 394, 735745.
Ponty, Y., Gilbert, A. D. & Soward, A. M. 2001 Kinematic dynamo action in large magnetic Reynolds number flows driven by shear and convection. J. Fluid Mech. 435, 261287.
Proctor, M. R. E. 2012 Bounds for growth rates for dynamos with shear. J. Fluid Mech. 697, 504510.
Proctor, M. R. E. & Hughes, D. W. 2011 Competing kinematic dynamo mechanisms in rotating convection with shear. In Astrophysical Dynamics: From Stars to Galaxies, Proceedings IAU Symposium No. 271 (ed. Brummell, N. H., Brun, A. S., Miesch, M. & Ponty, Y.), pp. 239246. Cambridge University Press.
Rogachevskii, I. & Kleeorin, N. 2007 Shear-current effect in a turbulent convection with a large-scale shear. Phys. Rev. E 75, 046305.
Rotvig, J. & Jones, C. A. 2002 Rotating convection-driven dynamos at low Ekman number. Phys. Rev. E 66, 056308.
Schrinner, M., Rädler, K.-H., Schmitt, D., Rheinhardt, M. & Christensen, U. R. 2007 Geophys. Astrophys. Fluid Dyn. 101, 81116.
Soward, A. M. 1974 A convection driven dynamo I. The weak field case. Phil. Trans. R. Soc. Lond. A 275, 611651.
Sridhar, S. & Singh, N. K 2010 The shear dynamo problem for small magnetic Reynolds numbers. J. Fluid Mech. 664, 265285.
St Pierre, M. G. 1993 The strong field branch of the Childress–Soward dynamo. In Theory of Solar and Planetary Dynamos (ed. Proctor, M. R. E., Matthews, P. C. & Rucklidge, A. M.), pp. 295302. Cambridge University Press.
Stellmach, S. & Hansen, U. 2004 Cartesian convection driven dynamos at low Ekman number. Phys. Rev. E 70, 056312.
Tobias, S. M. & Cattaneo, F. 2008 Dynamo action in complex flows: the quick and the fast. J. Fluid Mech. 601, 101122.
Yousef, T. A., Heinemann, T., Schekochihin, A. A., Kleeorin, N., Rogachevskii, I., Iskakov, A. B., Cowley, S. C. & McWilliams, J. C. 2008a Generation of magnetic field by combined action of turbulence and shear. Phys. Rev. Lett. 100, 184501.
Yousef, T. A., Heinemann, T., Rincon, F., Schekochihin, A. A., Kleeorin, N., Rogachevskii, I., Cowley, S. C. & McWilliams, J. C. 2008b Numerical experiments on dynamo action in sheared and rotating turbulence. Astron. Nachr. 329, 737749.
Zhang, P., Gilbert, A. D. & Zhang, K. 2006 Nonlinear dynamo action in rotating convection and shear. J. Fluid Mech. 546, 2549.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO
Type Description Title

Hughes and M. R. E. Proctor supplementary movie
Temporal evolution of $B_x$ at the upper boundary for $U_0 =1000$

 Video (9.1 MB)
9.1 MB

The effect of velocity shear on dynamo action due to rotating convection

  • D. W. Hughes (a1) and M. R. E. Proctor (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.