Skip to main content Accessibility help
×
Home

The effect of uniform electric field on the cross-stream migration of a drop in plane Poiseuille flow

  • Shubhadeep Mandal (a1), Aditya Bandopadhyay (a2) and Suman Chakraborty (a1) (a2)

Abstract

The effect of a uniform electric field on the motion of a drop in an unbounded plane Poiseuille flow is studied analytically. The drop and suspending media are considered to be Newtonian and leaky dielectric. We solve for the two-way coupled electric and flow fields analytically by using a double asymptotic expansion for small charge convection and small shape deformation. We obtain two important mechanisms of cross-stream migration of the drop: (i) shape deformation and (ii) charge convection. The second one is a new source of cross-stream migration of the drop in plane Poiseuille flow which is due to an asymmetric charge distribution on the drop surface. Our study reveals that charge convection can cause a spherical non-deformable drop to migrate in the cross-stream direction. The combined effect of charge convection and shape deformation significantly alters the drop velocity, drop trajectory and steady state transverse position of the drop. We predict that, depending on the orientation of the applied uniform electric field and the relevant drop/medium electrohydrodynamic parameters, the drop may migrate either towards the centreline of the flow or away from it. We obtain that the final steady state transverse position of the drop is independent of its initial transverse position in the flow field. Most interestingly, we show that the drop can settle in an off-centreline steady state transverse position. Two-dimensional numerical simulations are also performed to study the drop motion in the combined presence of plane Poiseuille flow and a tilted electric field. The drop trajectory and steady state transverse position of the drop obtained from numerical simulations are in qualitative agreement with the analytical results.

Copyright

Corresponding author

Email address for correspondence: suman@mech.iitkgp.ernet.in

References

Hide All
Ahn, K., Kerbage, C., Hunt, T. P., Westervelt, R. M., Link, D. R. & Weitz, D. A. 2006 Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl. Phys. Lett. 88 (2), 024104.
Bandopadhyay, A., Mandal, S., Kishore, N. K. & Chakraborty, S. 2016 Uniform electric-field-induced lateral migration of a sedimenting drop. J. Fluid Mech. 792, 553589.
Baroud, C., Delville, J.-P., Gallaire, F. & Wunenburger, R. 2007 Thermocapillary valve for droplet production and sorting. Phys. Rev. E 75 (4), 046302.
Basu, A. S. & Gianchandani, Y. B. 2008 Virtual microfluidic traps, filters, channels and pumps using Marangoni flows. J. Micromech. Microengng 18 (11), 115031.
Bhagat, A. A. S., Bow, H., Hou, H. W., Tan, S. J., Han, J. & Lim, C. T. 2010 Microfluidics for cell separation. Med. Biol. Engng Comput. 48 (10), 9991014.
Brenner, H. 1964 The Stokes resistance of a slightly deformed sphere. Chem. Engng Sci. 19 (8), 519539.
Bringer, M. R., Gerdts, C. J., Song, H., Tice, J. D. & Ismagilov, R. F. 2004 Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Phil. Trans. A 362 (1818), 10871104.
Casadevall i Solvas, X. & deMello, A. 2011 Droplet microfluidics: recent developments and future applications. Chem. Commun. 47 (7), 19361942.
Chaffey, C. E., Brenner, H. & Mason, S. G. 1965 Particle motions in sheared suspensions. Rheol. Acta 4 (1), 6472.
Chan, P. C.-H. & Leal, L. G. 1979 The motion of a deformable drop in a second-order fluid. J. Fluid Mech. 92 (01), 131170.
Chaudhury, K., Mandal, S. & Chakraborty, S. 2016 Droplet migration characteristics in confined oscillatory microflows. Phys. Rev. E 93 (2), 023106.
Chen, X., Song, Y., Li, D. & Hu, G. 2015 Deformation and interaction of droplet pairs in a microchannel under ac electric fields. Phys. Rev. Appl. 4 (2), 024005.
Chen, X., Xue, C., Zhang, L., Hu, G., Jiang, X. & Sun, J. 2014 Inertial migration of deformable droplets in a microchannel. Phys. Fluids 26 (11), 112003.
Cimpeanu, R., Papageorgiou, D. T. & Petropoulos, P. G. 2014 On the control and suppression of the Rayleigh–Taylor instability using electric fields. Phys. Fluids 26 (2).
Das, D. & Saintillan, D.2016 A nonlinear small-deformation theory for transient droplet electrohydrodynamics. arXiv:1605.04036v2 [physics.flu-dyn].
Datta, S., Das, A. K. & Das, P. K. 2015 Uphill movement of sessile droplets by electrostatic actuation. Langmuir 31 (37), 1019010197.
Deshmukh, S. D. & Thaokar, R. M. 2013 Deformation and breakup of a leaky dielectric drop in a quadrupole electric field. J. Fluid Mech. 731, 713733.
Ding, X., Li, P., Lin, S.-C. S., Stratton, Z. S., Nama, N., Guo, F., Slotcavage, D., Mao, X., Shi, J., Costanzo, F. & Huang, T. J. 2013 Surface acoustic wave microfluidics. Lab on a Chip 13 (18), 36263649.
Esmaeeli, A. 2016 Dielectrophoretic- and electrohydrodynamic-driven translational motion of a liquid column in transverse electric fields. Phys. Fluids 28, 073306.
Feng, J. Q. 1999 Electrohydrodynamic behaviour of a drop subjected to a steady uniform electric field at finite electric Reynolds number. Proc. R. Soc. Lond. A 455 (1986), 22452269.
Feng, J. Q. & Scott, T. C. 2006 A computational analysis of electrohydrodynamics of a leaky dielectric drop in an electric field. J. Fluid Mech. 311, 289.
Fernández, A. 2008 Response of an emulsion of leaky dielectric drops immersed in a simple shear flow: drops less conductive than the suspending fluid. Phys. Fluids 20 (4), 043304.
Fernández, A. 2009 Shear flow of an emulsion of drops less conductive than the suspending fluid immersed in an electric field by numerical simulation. Colloids Surf. A 338 (1–3), 6879.
Ferrera, C., López-Herrera, J. M., Herrada, M. A., Montanero, J. M. & Acero, A. J. 2013 Dynamical behavior of electrified pendant drops. Phys. Fluids 25 (1), 012104.
Franke, T., Abate, A. R., Weitz, D. A. & Wixforth, A. 2009 Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. Lab on a Chip 9 (18), 26252627.
Griggs, A. J., Zinchenko, A. Z. & Davis, R. H. 2007 Low-Reynolds-number motion of a deformable drop between two parallel plane walls. Intl J. Multiphase Flow 33 (2), 182206.
Guo, M. T., Rotem, A., Heyman, J. A. & Weitz, D. A. 2012 Droplet microfluidics for high-throughput biological assays. Lab on a Chip 12 (12), 21462155.
Ha, J.-W. & Yang, S.-M. 2000a Deformation and breakup of Newtonian and non-Newtonian conducting drops in an electric field. J. Fluid Mech. 405, 131156.
Ha, J.-W. & Yang, S.-M. 2000b Rheological responses of oil-in-oil emulsions in an electric field. J. Rheol. 44 (2), 235.
Haber, S. & Hetsroni, G. 1971 The dynamics of a deformable drop suspended in an unbounded Stokes flow. J. Fluid Mech. 49 (02), 257277.
Halim, M. A. & Esmaeeli, A. 2013 Computational studies on the transient electrohydrodynamics of a liquid drop. Fluid Dyn. Mater. Process. 9 (4), 435460.
Hanna, J. A. & Vlahovska, P. M. 2010 Surfactant-induced migration of a spherical drop in Stokes flow. Phys. Fluids 22 (1), 013102.
Happel, J. & Brenner, H. 1981 Low Reynolds Number Hydrodynamics. Springer.
Hetsroni, G. & Haber, S. 1970 The flow in and around a droplet or bubble submerged in an unbound arbitrary velocity field. Rheol. Acta 9 (4), 488496.
Im, D. J. & Kang, I. S. 2003 Electrohydrodynamics of a drop under nonaxisymmetric electric fields. J. Colloid Interface Sci. 266 (1), 127140.
Karnis, A. & Mason, S. 1967 Particle motions in sheared suspensions. J. Colloid Interface Sci. 24 (2), 164169.
Khalili, H. & Mortazavi, S. 2012 Numerical simulation of buoyant drops suspended in Poiseuille flow at nonzero Reynolds numbers. Acta Mechanica 224 (2), 269286.
Kim, S. & Karrila, S. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.
Lac, E. & Homsy, G. M. 2007 Axisymmetric deformation and stability of a viscous drop in a steady electric field. J. Fluid Mech. 590, 239264.
Lamb, H. 1975 Hydrodynamics, 6th edn. Cambridge University Press.
Lanauze, J. A., Walker, L. M. & Khair, A. S. 2013 The influence of inertia and charge relaxation on electrohydrodynamic drop deformation. Phys. Fluids 25 (11), 112101.
Lanauze, J. A., Walker, L. M. & Khair, A. S. 2015 Nonlinear electrohydrodynamics of slightly deformed oblate drops. J. Fluid Mech. 774, 245266.
Leal, L. G. 1980 Particle motions in a viscous fluid. Annu. Rev. Fluid Mech. 12 (1), 435476.
Leal, L. G. 2007 Advanced Transport Phenomena. Cambridge University Press.
Link, D. R., Grasland-Mongrain, E., Duri, A., Sarrazin, F., Cheng, Z., Cristobal, G., Marquez, M. & Weitz, D. A. 2006 Electric control of droplets in microfluidic devices. Angew. Chem. Intl Ed. Engl. 45 (16), 25562560.
López-Herrera, J. M., Gañán-Calvo, A. M., Popinet, S. & Herrada, M. A. 2015 Electrokinetic effects in the breakup of electrified jets: a volume-of-fluid numerical study. Intl J. Multiphase Flow 71, 1422.
López-Herrera, J. M., Popinet, S. & Herrada, M. A. 2011 A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid. J. Comput. Phys. 230 (5), 19391955.
Magnaudet, J. 2003 Small inertial effects on a spherical bubble, drop or particle moving near a wall in a time-dependent linear flow. J. Fluid Mech. 485, 115142.
Mahlmann, S. & Papageorgiou, D. 2009 Numerical study of electric field effects on the deformation of two-dimensional liquid drops in simple shear flow at arbitrary Reynolds number. J. Fluid Mech. 626, 367.
Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2015 Effect of interfacial slip on the cross-stream migration of a drop in an unbounded Poiseuille flow. Phys. Rev. E 92 (2), 023002.
Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2016a Dielectrophoresis of a surfactant-laden viscous drop. Phys. Fluids 28 (6), 062006.
Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2016b Effect of surface charge convection and shape deformation on the dielectrophoretic motion of a liquid drop. Phys. Rev. E 93 (4), 043127.
Mandal, S., Chaudhury, K. & Chakraborty, S. 2014 Transient dynamics of confined liquid drops in a uniform electric field. Phys. Rev. E 89 (5), 053020.
Mandal, S., Ghosh, U. & Chakraborty, S. 2016 Effect of surfactant on motion and deformation of compound droplets in arbitrary unbounded Stokes flows. J. Fluid Mech. 803, 200249.
Melcher, J. R. & Taylor, G. I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1 (1), 111146.
Mhatre, S. & Thaokar, R. M. 2013 Drop motion, deformation, and cyclic motion in a non-uniform electric field in the viscous limit. Phys. Fluids 25 (7), 072105.
Mortazavi, S. & Tryggvason, G. 2000 A numerical study of the motion of drops in Poiseuille flow. Part 1. Lateral migration of one drop. J. Fluid Mech. 411, 325350.
Mukherjee, S. & Sarkar, K. 2013 Effects of matrix viscoelasticity on the lateral migration of a deformable drop in a wall-bounded shear. J. Fluid Mech. 727, 318345.
Mukherjee, S. & Sarkar, K. 2014 Lateral migration of a viscoelastic drop in a Newtonian fluid in a shear flow near a wall. Phys. Fluids 26 (10), 103102.
Pak, O. S., Feng, J. & Stone, H. A. 2014 Viscous Marangoni migration of a drop in a Poiseuille flow at low surface Péclet numbers. J. Fluid Mech. 753, 535552.
Pamme, N. 2012 On-chip bioanalysis with magnetic particles. Curr. Opin. Chem. Biol. 16 (3–4), 436443.
Popinet, S. 2003 Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190 (2), 572600.
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.
Saville, D. A. 1997 Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29 (1), 2764.
Schwalbe, J. T., Phelan, F. R. Jr., Vlahovska, P. M. & Hudson, S. D. 2011 Interfacial effects on droplet dynamics in Poiseuille flow. Soft Matt. 7 (17), 7797.
Seemann, R., Brinkmann, M., Pfohl, T. & Herminghaus, S. 2012 Droplet based microfluidics. Rep. Prog. Phys. 75 (1), 016601.
Stan, C. A., Guglielmini, L., Ellerbee, A. K., Caviezel, D., Stone, H. A. & Whitesides, G. M. 2011 Sheathless hydrodynamic positioning of buoyant drops and bubbles inside microchannels. Phys. Rev. E 84 (3), 036302.
Supeene, G., Koch, C. R. & Bhattacharjee, S. 2008 Deformation of a droplet in an electric field: nonlinear transient response in perfect and leaky dielectric media. J. Colloid Interface Sci. 318 (2), 463476.
Taylor, G. 1966 Studies in electrohydrodynamics. I: the circulation produced in a drop by electrical field. Proc. R. Soc. Lond. A 291 (1425), 159166.
Teh, S.-Y., Lin, R., Hung, L.-H. & Lee, A. P. 2008 Droplet microfluidics. Lab on a Chip 8 (2), 198220.
Thaokar, R. M. 2012 Dielectrophoresis and deformation of a liquid drop in a non-uniform, axisymmetric AC electric field. Eur. Phys. J. E 35 (8), 76.
Torza, S., Cox, R. G. & Mason, S. G. 1971 Electrohydrodynamic deformation and burst of liquid drops. Phil. Trans. R. Soc. Lond. A 269 (1198), 295319.
Uijttewaal, W. S. J. & Nijhof, E. J. 1995 The motion of a droplet subjected to linear shear flow including the presence of a plane wall. J. Fluid Mech. 302, 45.
Uijttewaal, W. S. J., Nijhof, E.-J. & Heethaar, R. M. 1993 Droplet migration, deformation, and orientation in the presence of a plane wall: a numerical study compared with analytical theories. Phys. Fluids A 5 (4), 819.
Vizika, O. & Saville, D. A. 2006 The electrohydrodynamic deformation of drops suspended in liquids in steady and oscillatory electric fields. J. Fluid Mech. 239 (–1), 1.
Vlahovska, P. M. 2011 On the rheology of a dilute emulsion in a uniform electric field. J. Fluid Mech. 670, 481503.
Wang, Y. & Dimitrakopoulos, P. 2011 Low-Reynolds-number droplet motion in a square microfluidic channel. Theor. Comput. Fluid Dyn. 26 (1–4), 361379.
Wohl, P. R. & Rubinow, S. I. 1974 The transverse force on a drop in an unbounded parabolic flow. J. Fluid Mech. 62 (01), 185207.
Xu, X. & Homsy, G. M. 2006 The settling velocity and shape distortion of drops in a uniform electric field. J. Fluid Mech. 564, 395.
Yariv, E. & Almog, Y. 2016 The effect of surface-charge convection on the settling velocity of spherical drops in a uniform electric field. J. Fluid Mech. 797, 536548.
Zheng, B., Tice, J. D. & Ismagilov, R. F. 2004 Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays. Anal. Chem. 76 (17), 49774982.
Zhu, Y. & Fang, Q. 2013 Analytical detection techniques for droplet microfluidics – a review. Anal. Chim. Acta 787, 2435.
Zhu, Y., Zhu, L.-N., Guo, R., Cui, H.-J., Ye, S. & Fang, Q. 2014 Nanoliter-scale protein crystallization and screening with a microfluidic droplet robot. Sci. Rep. 4, 5046.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
UNKNOWN
Supplementary materials

Mandal supplementary material
Mandal supplementary material 1

 Unknown (117 KB)
117 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed