Ahn, K., Kerbage, C., Hunt, T. P., Westervelt, R. M., Link, D. R. & Weitz, D. A.
2006
Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl. Phys. Lett.
88 (2), 24104.
Anna, S. L.
2016
Droplets and bubbles in microfluidic devices. Annu. Rev. Fluid Mech.
48 (1), 285–309.
Balasubramaniam, R. & Lavery, J. E.
1989
Numerical simulation of thermocapillary bubble migration under microgravity for large Reynolds and Marangoni numbers. Numer. Heat Transfer A
16 (2), 175–187.
Balasubramaniam, R. & Subramaniam, R. S.
1996
Thermocapillary bubble migration – thermal boundary layers for large Marangoni numbers. Intl J. Multiphase Flow
22 (3), 593–612.
Balasubramaniam, R. & Subramanian, R. S.
2004
Thermocapillary convection due to a stationary bubble. Phys. Fluids
16 (8), 3131–3137.
Balcázar, N., Oliva, A. & Rigola, J.
2016
A level-set method for thermal motion of bubbles and droplets. J. Phys.: Conf. Ser.
745, 32113.
Bandopadhyay, A., Mandal, S., Kishore, N. K. & Chakraborty, S.
2016
Uniform electric-field-induced lateral migration of a sedimenting drop. J. Fluid Mech.
792, 553–589.
Baroud, C. N., Gallaire, F. & Dangla, R.
2010
Dynamics of microfluidic droplets. Lab on a Chip
10 (16), 2032–2045.
Barton, K. D. & Shankar Subramanian, R.
1990
Thermocapillary migration of a liquid drop normal to a plane surface. J. Colloid Interface Sci.
137 (1), 170–182.
Barton, K. D. & Subramanian, R. S.
1991
Migration of liquid drops in a vertical temperature gradient – interaction effects near a horizontal surface. J. Colloid Interface Sci.
141 (1), 146–156.
Casadevall i Solvas, X. & DeMello, A. J.
2011
Droplet microfluidics: recent developments and future applications. Chem. Commun. (Camb).
47 (7), 1936–1942.
Chan, P. C.-H. & Leal, L. G.
1979
The motion of a deformable drop in a second-order fluid. J. Fluid Mech.
92 (1), 131–170.
Chen, S. H.
1999
Thermocapillary deposition of a fluid droplet normal to a planar surface. Langmuir
15 (8), 2674–2683.
Chen, S. H.
2003
Thermocapillary coagulations of a fluid sphere and a gas bubble. Langmuir
19 (11), 4582–4591.
Choudhuri, D. & Raja Sekhar, G. P.
2013
Thermocapillary drift on a spherical drop in a viscous fluid. Phys. Fluids
25 (4), 043104.
Das, S., Mandal, S., Som, S. K. & Chakraborty, S.
2017
Migration of a surfactant-laden droplet in non-isothermal Poiseuille flow. Phys. Fluids
29 (1), 12002.
Di Carlo, D., Irimia, D., Tompkins, R. G. & Toner, M.
2007
Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl Acad. Sci. USA
104 (48), 18892–18897.
Haj-Hariri, H., Nadim, A. & Borhan, A.
1990
Effect of inertia on the thermocapillary velocity of a drop. J. Colloid Interface Sci.
140 (1), 277–286.
Haj-Hariri, H., Shi, Q. & Borhan, A.
1997
Thermocapillary motion of deformable drops at finite Reynolds and Marangoni numbers. Phys. Fluids
9 (4), 845–855.
Hetsroni, G. & Haber, S.
1970
The flow in and around a droplet or bubble submerged in an unbound arbitrary velocity field. Rheol. Acta
9 (4), 488–496.
Huebner, A., Sharma, S., Srisa-Art, M., Hollfelder, F., Edel, J. B. & Demello, A. J.
2008
Microdroplets: a sea of applications?
Lab on a Chip
8 (8), 1244–1254.
Karbalaei, A., Kumar, R. & Cho, H. J.
2016
Thermocapillarity in microfluidics – a review. Micromachines
7 (1), 1–41.
Kim, H. S. & Subramanian, R. S.
1989
The thermocapillary migration of a droplet with insoluble surfactant: II. General case. J. Colloid Interface Sci.
130 (1), 112–129.
Kim, J. H., Jeon, T. Y., Choi, T. M., Shim, T. S., Kim, S.-H. & Yang, S.-M.
2014
Droplet microfluidics for producing functional microparticles. Langmuir
30 (6), 1473–1488.
Kinoshita, H., Kaneda, S., Fujii, T. & Oshima, M.
2007
Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. Lab on a Chip
7 (3), 338–346.
Leal, L. G.
1980
Particle motions in a viscous fluid. Annu. Rev. Fluid Mech.
12 (1), 435–476.
Link, D. R., Grasland-Mongrain, E., Duri, A., Sarrazin, F., Cheng, Z., Cristobal, G., Marquez, M. & Weitz, D. A.
2006
Electric control of droplets in microfluidic devices. Angew. Chem. Intl Ed. Engl.
45 (16), 2556–2560.
Mandal, S., Bandopadhyay, A. & Chakraborty, S.
2015
Effect of interfacial slip on the cross-stream migration of a drop in an unbounded Poiseuille flow. Phys. Rev. E
92 (2), 23002.
Mandal, S., Bandopadhyay, A. & Chakraborty, S.
2016
Dielectrophoresis of a surfactant – laden viscous drop. Phys. Fluids
62006 (28), 62006.
Meyyappan, M. & Subramanian, R. S.
1987
Thermocapillary migration of a gas bubble in an arbitrary direction with respect to a plane surface. J. Colloid Interface Sci.
115 (1), 206–219.
Mortazavi, S. & Tryggvason, G.
2000
A numerical study of the motion of drops in Poiseuille flow. Part 1. Lateral migration of one drop. J. Fluid Mech.
411, 325–350.
Murr, L. E. & Johnson, W. L.
2017
3D metal droplet printing development and advanced materials additive manufacturing. J. Mater. Res. Technol.
6, 77–89.
Nadim, A., Haj-Hariri, H. & Borhan, A.
1990
Thermocapillary migration of slightly deformed droplets. Part. Sci. Technol.
8 (3–4), 191–198.
Nas, S. & Tryggvason, G.
2003
Thermocapillary interaction of two bubbles or drops. Intl J. Multiphase Flow
29 (7), 1117–1135.
Nguyen, H.-B. & Chen, J.-C.
2010
A numerical study of thermocapillary migration of a small liquid droplet on a horizontal solid surface. Phys. Fluids
22 (6), 62102.
Olsson, E. & Kreiss, G.
2005
A conservative level set method for two phase flow. J. Comput. Phys.
225 (1), 785–807.
Pak, O. S., Feng, J. & Stone, H. A.
2014
Viscous Marangoni migration of a drop in a Poiseuille flow at low surface Péclet numbers. J. Fluid Mech.
753, 535–552.
Robert de Saint Vincent, M., Wunenburger, R. & Delville, J.
2008
Laser switching and sorting for high speed digital microfluidics. Appl. Phys. Lett.
92, 154105.
Sajeesh, P. & Sen, A. K.
2014
Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluid
17 (1), 1–52.
Seemann, R., Brinkmann, M., Pfohl, T. & Herminghaus, S.
2012
Droplet based microfluidics. Rep. Prog. Phys.
75 (75), 16601–16641.
Sethian, J. A. & Smereka, P.
2003
Level set methods for fluid interfaces. Annu. Rev. Fluid Mech.
35 (1), 341–372.
Stan, C. A., Guglielmini, L., Ellerbee, A. K., Caviezel, D., Stone, H. A. & Whitesides, G. M.
2011
Sheathless hydrodynamic positioning of buoyant drops and bubbles inside microchannels. Phys. Rev. E
84 (3), 036302.
Stone, H. A., Stroock, A. D. & Ajdari, A.
2004
Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech.
36 (1), 381–411.
Subramanian, R. S.
1983
Thermocapillary migration of bubbles and droplets. Adv. Space Res.
3 (5), 145–153.
Teh, S.-Y., Lin, R., Hung, L.-H. & Lee, A. P.
2008
Droplet microfluidics. Lab on a Chip
8 (2), 198–220.
Uijttewaal, W. S. J. & Nijhof, E. J.
1995
The motion of a droplet subjected to linear shear flow including the presence of a plane wall. J. Fluid Mech.
302, 45–63.
Uijttewaal, W. S. J., Nijhof, E.-J. & Heethaar, R. M.
1993
Droplet migration, deformation, and orientation in the presence of a plane wall: a numerical study compared with analytical theories. Phys. Fluids A
5 (4), 819.
Wang, J., Lu, P., Wang, Z., Yang, C. & Mao, Z.-S.
2008
Numerical simulation of unsteady mass transfer by the level set method. Chem. Engng Sci.
63 (12), 3141–3151.
Ward, T., Faivre, M., Abkarian, M. & Stone, H. A.
2005
Microfluidic flow focusing: drop size and scaling in pressure versus flow-rate-driven pumping. Electrophoresis
26 (19), 3716–3724.
Wu, Z.-B. & Hu, W.-R.
2011
Thermocapillary migration of a planar droplet at moderate and large Marangoni numbers. Acta Mech.
223 (3), 609–626.
Yariv, E. & Shusser, M.
2006
On the paradox of thermocapillary flow about a stationary bubble. Phys. Fluids
18 (7), 072101.
Young, N. O., Goldstein, J. S. & Block, M. J.
1959
The motion of bubbles in a vertical temperature gradient. J. Fluid Mech.
6 (3), 350–356.
Zhang, L., Subramanian, R. S. & Balasubramaniam, R.
2001
Motion of a drop in a vertical temperature gradient at small Marangoni number – the critical role of inertia. J. Fluid Mech.
448, 197–211.
Zhou, H. & Pozrikidis, C.
1993
The flow of suspensions in channels: single files of drops. Phys. Fluids A
5 (2), 311–324.
Zhou, H. & Pozrikidis, C.
1994
Pressure-driven flow of suspensions of liquid drops. Phys. Fluids
6 (1), 80–94.
Zhu, Y. & Fang, Q.
2013
Analytical detection techniques for droplet microfluidics – a review. Anal. Chim. Acta
787, 24–35.