Skip to main content Accessibility help

Effect of the multiphase composition in a premixed fuel–air stream on wedge-induced oblique detonation stabilisation

  • Zhaoxin Ren (a1), Bing Wang (a2), Gaoming Xiang (a2) and Longxi Zheng (a1)


An oblique detonation wave in two-phase kerosene–air mixtures over a wedge is numerically studied for the first time. The features of initiation and stabilisation of the two-phase oblique detonation are emphasised, and they are different from those in previous studies on single-phase gaseous detonation. The gas–droplet reacting flow system is solved by means of a hybrid Eulerian–Lagrangian method. The two-way coupling for the interphase interactions is carefully considered using a particle-in-cell model. For discretisation of the governing equations of the gas phase, a WENO-CU6 scheme (Hu et al., J. Comput. Phys., vol. 229 (23), 2010, pp. 8952–8965) and a sixth-order compact scheme are employed for the convective terms and the diffusive terms, respectively. The inflow parameters are chosen properly from real flight conditions. The fuel vapour, droplets and their mixture are taken as the fuel in homogeneous streams with a stoichiometric ratio, respectively. The effects of evaporating droplets and initial droplet size on the initiation, transition from oblique shock to detonation and stabilisation are elucidated. The two-phase oblique detonation wave is stabilised from the oblique shock wave induced by the wedge. As the mass flow rate of droplets increases, a shift from a smooth transition with a curved shock to an abrupt one with a multi-wave point is found, and the initiation length of the oblique detonation increases, which is associated with the increase of the transition pressure. By increasing the initial droplet size, a smooth transition pattern is observed, even if the equivalence ratio remains constant, and the transition pressure decreases. The factor responsible is incomplete evaporation before the detonation fronts, which results in a complicated flame structure, including regimes of formation of oblique detonation, evaporative cooling of droplets and post-detonation reaction.


Corresponding author

Email address for correspondence:


Hide All
Burcat, A. & Ruscic, B. 2005 Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables. Argonne National Laboratory, Argonne, IL.
Chaudhuri, A., Hadjadj, A. & Chinnayya, A. 2011 On the use of immersed boundary methods for shock/obstacle interactions. J. Comput. Phys. 230 (5), 17311748.
Choi, J. Y., Kim, D. W., Jeung, I. S., Ma, F. & Yang, V. 2007 Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation. Proc. Combust. Inst. 31 (2), 24732480.
Crowe, C. T., Sharma, M. P. & Stock, D. E. 1977 The particle-source-in cell (PSI-cell) model for gas–droplet flows. Trans. ASME J. Fluids Engng 99 (2), 325332.
Fedkiw, R. P., Merriman, B. & Osher, S. 1997 High accuracy numerical methods for thermally perfect gas flows with chemistry. J. Comput. Phys. 132 (2), 175190.
Franzelli, B., Riber, E., Sanjosé, M. & Poinsot, T. 2010 A two-step chemical scheme for kerosene–air premixed flames. Combust. Flame 157 (7), 13641373.
Hu, X. Y., Wang, Q. & Adams, N. A. 2010 An adaptive central-upwind weighted essentially non-oscillatory scheme. J. Comput. Phys. 229 (23), 89528965.
Iwata, K., Nakaya, S. & Tsue, M. 2017 Wedge-stabilized oblique detonation in an inhomogeneous hydrogen–air mixture. Proc. Combust. Inst. 36 (2), 27612769.
Kailasanath, K. 2003 Recent developments in the research on pulse detonation engines. AIAA J. 41 (2), 145159.
Kitano, T., Kaneko, K., Kurose, R. & Komori, S. 2016 Large-eddy simulations of gas- and liquid-fueled combustion instabilities in back-step flows. Combust. Flame 170, 6378.
Li, C., Kailasanath, K. & Oran, E. S. 1994 Detonation structures behind oblique shocks. Phys. Fluids 6 (4), 16001611.
Ling, Y., Balachandar, S. & Parmar, M. 2016 Inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows. Phys. Fluids 28 (3), 033304.
Liu, Y., Wu, D., Yao, S. & Wang, J. 2015 Analytical and numerical investigations of wedge-induced oblique detonation waves at low inflow Mach number. Combust. Sci. Technol. 187 (6), 843856.
Loth, E. 2008 Compressibility and rarefaction effects on drag of a spherical particle. AIAA J. 46 (9), 22192228.
Miller, R. S., Harstad, K. & Bellan, J. 1998 Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas–liquid flow simulations. Intl J. Multiphase Flow 24 (6), 10251055.
Poling, B. E., Prausnitz, J. M., O’Connell, J. P. et al. 2001 The Properties of Gases and Liquids, vol. 5. McGraw-Hill.
Pratt, D. T., Humphrey, J. & Glenn, D. 1991 Morphology of standing oblique detonation waves. J. Propul. Power 7 (5), 837845.
Qian, C., Bing, W., Huiqiang, Z., Yunlong, Z. & Wei, G. 2016 Numerical investigation of H2 /air combustion instability driven by large scale vortex in supersonic mixing layers. Intl J. Hydrogen Energy 41 (4), 31713184.
Ren, Z., Wang, B., Xie, Q. & Wang, D. 2017 Thermal auto-ignition in high-speed droplet-laden mixing layers. Fuel 191, 176189.
Rubins, P. M. & Rhodes, R. P. Jr 1963 Shock-induced combustion with oblique shocks: comparison of experiment and kinetic calculations. AIAA J. 1 (12), 27782784.
Stewart, D. S. & Kasimov, A. R. 2006 State of detonation stability theory and its application to propulsion. J. Propul. Power 22 (6), 1230.
Teng, H., Ng, H. D. & Jiang, Z. 2017 Initiation characteristics of wedge-induced oblique detonation waves in a stoichiometric hydrogen–air mixture. Proc. Combust. Inst. 36 (2), 27352742.
Teng, H., Ng, H. D., Li, K., Luo, C. & Jiang, Z. 2015 Evolution of cellular structures on oblique detonation surfaces. Combust. Flame 162 (2), 470477.
Teng, H. H. & Jiang, Z. L. 2012 On the transition pattern of the oblique detonation structure. J. Fluid Mech. 713, 659669.
Teng, H. H., Jiang, Z. L. & Ng, H. D. 2014 Numerical study on unstable surfaces of oblique detonations. J. Fluid Mech. 744, 111128.
Verreault, J., Higgins, A. J. & Stowe, R. A. 2013 Formation of transverse waves in oblique detonations. Proc. Combust. Inst. 34 (2), 19131920.
Viguier, C., da Silva, L. F. F., Desbordes, D. & Deshaies, B. 1996 Onset of oblique detonation waves: comparison between experimental and numerical results for hydrogen–air mixtures. In Symp. Intl Combust., vol. 26, pp. 30233031. Elsevier.
Wang, T., Zhang, Y., Teng, H., Jiang, Z. & Ng, H. D. 2015 Numerical study of oblique detonation wave initiation in a stoichiometric hydrogen–air mixture. Phys. Fluids 27 (9), 096101.
Zhang, X. & Shu, C. W. 2010 On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229 (9), 30913120.
Zhang, Y., Gong, J. & Wang, T. 2016 Numerical study on initiation of oblique detonations in hydrogen–air mixtures with various equivalence ratios. Aerosp. Sci. Technol. 49, 130134.
Zhang, Y., Wang, B., Zhang, H. & Xue, S. 2014 Mixing enhancement of compressible planar mixing layer impinged by oblique shock waves. J. Propul. Power 31 (1), 156169.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Effect of the multiphase composition in a premixed fuel–air stream on wedge-induced oblique detonation stabilisation

  • Zhaoxin Ren (a1), Bing Wang (a2), Gaoming Xiang (a2) and Longxi Zheng (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed