Aidun, C. K., Lu, Y. & Ding, E.-J.
1998
Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech.
373, 287–311.

Amini, H., Lee, W. & Carlo, D. D.
2014
Inertial microfluidic physics. Lab on a Chip
14, 2739–2761.

Batchelor, G. K.
1970a
Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech.
44, 791–810.

Batchelor, G. K.
1970b
The stress system in a suspension of force-free particles. J. Fluid Mech.
41, 545–570.

Batchelor, G. K.
1972
Sedimentation in a dillute dispersion of spheres. J. Fluid Mech.
52, 245–268.

Batchelor, G. K.
1977
Developments in microhydrodynamics. In Theor. and Appl. Mechanics: Proc. Fourteenth Int. Cong., Delft, Netherlands, vol. 83, pp. 33–55.

Batchelor, G. K. & Green, J.
1972a
The determination of the bulk stress in a suspension of spherical particles to order
$c^{2}$
. J. Fluid Mech.
56, 401–427.
Batchelor, G. K. & Green, J.
1972b
The hydrodynamic interaction of two small freely-moving spheres in a linear flow field. J. Fluid Mech.
56, 375–400.

Brenner, H.
1974
Rheology of a dilute suspension of axisymmetric Brownian particles. Intl J. Multiphase Flow
1 (2), 195–341.

Bretherton, F. P.
1962
The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech.
14 (02), 284–304.

Carlo, D. D.
2009
Inertial microfluidics. Lab on a Chip
9, 3038–3046.

Caro, C. G., Pedley, T. J., Schroter, R. C. & Seed, W. A.
2012
The Mechanics of the Circulation. Cambridge University Press.

Challabotla, N. R., Nilsen, C. & Andersson, H. I.
2015
On rotational dynamics of inertial disks in creeping shear flow. Phys. Lett. A
379, 011704.

Chwang, A. T.
1975
Hydromechanics of low-Reynolds-number flow. Part 3. Motion of a spheroidal particle in quadratic flows. J. Fluid Mech.
72, 17–34.

Chwang, A. T. & Wu, T. Y.-T.
1974
Hydromechanics of low-Reynolds-number flow. Part 1. Rotation of axisymmetric prolate bodies. J. Fluid Mech.
63, 607–622.

Chwang, A. T. & Wu, T. Y.-T.
1975
Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows. J. Fluid Mech.
67, 787–815.

Dabade, V., Marath, N. K. & Subramanian, G.
2015
Effects of inertia and viscoelasticity on sedimenting anisotropic particles. J. Fluid Mech.
778, 133–188.

De Gennes, P. G.
1974
Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J. Chem. Phys.
60 (12), 5030–5042.

Ding, E.-J. & Aidun, C. K.
2000
The dynamics and scaling law for particles suspended in shear flow with inertia. J. Fluid Mech.
423, 317–344.

Einarsson, J., Angilella, J. R. & Mehlig, B.
2014
Orientational dynamics of weakly inertial axisymmetric particles in steady viscous flows. Physica D
278, 79–85.

Einarsson, J., Candelier, F., Lundell, F., Angilella, J. R. & Mehlig, B.
2015a
Effect of weak fluid inertia upon Jeffery orbits. Phys. Rev. E
91 (4), 041002.

Einarsson, J., Candelier, F., Lundell, F., Angilella, J. R. & Mehlig, B.
2015b
Rotation of a spheroid in a simple shear at small Reynolds number. Phys. Fluids
27 (6), 063301.

Gauthier, G., Gondret, P. & Rabaud, M.
1998
Motions of anisotropic particles: application to visualization of three-dimensional flows. Phys. Fluids
10 (9), 2147–2154.

Goldstein, H.
1962
Classical Mechanics, vol. 4. Pearson Education India.

Goto, S., Kida, S. & Fujiwara, S.
2011
Flow visualization using reflective flakes. J. Fluid Mech.
683, 417–429.

Gradshteyn, I. S. & Ryzhik, I. M.
2007
Table of Integrals, Series and Products. Academic.

Harper, E.Y. & Chang, I.-D.
1968
Maximum dissipation resulting from lift in a slow viscous shear flow. J. Fluid Mech.
33 (02), 209–225.

Hinch, E. J.
1974
Mechanical models of dilute polymer solutions for strong flows with large polymer deformations. In Polymères et Lubrification, pp. 351–372.

Hinch, E. J.
1977
An averaged-equation approach to particle interactions in a fluid suspension. J. Fluid Mech.
83, 695–720.

Hinch, E. J. & Leal, L. G.
1972
The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles. J. Fluid Mech.
52, 683–712.

Hsieh, C.-C. & Larson, R. G.
2005
Prediction of coil-stretch hysteresis for dilute polystyrene molecules in extensional flow. J. Rheol.
49 (5), 1081–1089.

Huang, H., Yang, X., Krafczyk, M. & Lu, X.-Y.
2012
Rotation of spheroidal particles in Couette flows. J. Fluid Mech.
692, 369–394.

Jeffery, G. B.
1922
The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A
102, 161–179.

Kao, S. V., Cox, R. G. & Mason, S. G.
1977
Streamlines around single spheres and trajectories of pairs of spheres in two-dimensional creeping flows. Chem. Engng Sci.
32, 1505.

Karnis, A., Goldsmith, H. L. & Mason, S. G.
1963
Axial migration of particles in Poiseuille flow. Nature
200, 159–160.

Karnis, A., Goldsmith, H. L. & Mason, S. G.
1966
The flow of suspensions through tubes: V. Inertial effects. Can. J. Chem. Engng
44 (4), 181–193.

Kim, S. & Karrila, S. J.
1991
Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.

Kushch, V. I.
1997
Microstresses and effective elastic moduli of a solid reinforced by periodically distributed spheroidal particles. Intl J. Solids Struct.
34, 1353–1366.

Kushch, V. I.
1998
Elastic equilibrium of a medium containing a finite number of arbitrarily oriented spheroidal inclusions. Intl J. Solids Struct.
35, 1187–1198.

Kushch, V. I. & Sangani, A. S.
2003
The complete solutions for Stokes interactions of spheroidal particles by the mutipole expansion method. Intl J. Mutiphase Flow
34, 1353–1366.

Leal, L. G.
1975
The slow motion of slender rod-like particles in a second-order fluid. J. Fluid Mech.
69, 305–337.

Leal, L. G.
1979
The motion of small particles in non-Newtonian fluids. J. Non-Newtonian Fluid Mech.
5, 33–78.

Leal, L. G.
1992
Laminar flow and convective transport processes, scaling principles and asymptotic analysis. In Butterworth-Heinemann Series in Chemical Engineering, Butterworth–Heinemann.

Leal, L. G. & Hinch, E. J.
1971
The effect of weak Brownian rotations on particles in shear flow. J. Fluid Mech.
46, 685–703.

Lin, C.-J., Peery, J. H. & Schowalter, W. R.
1970
Simple shear flow round a rigid sphere: inertial effects and suspension rheology. J. Fluid Mech.
44, 1–17.

Llewellin, E. W., Mader, H. M. & Wilson, S. D. R.
2002
The constitutive equation and flow dynamics of bubbly magmas. Geophys. Res. Lett.
29, 2170.

Lundell, F.
2011
The effect of particle inertia on triaxial ellipsoids in creeping shear: from drift toward chaos to a single periodic solution. Phys. Fluids
23 (1), 011704.

Lundell, F. & Carlsson, A.
2010
Heavy ellipsoids in creeping shear flow: transitions of the particle rotation rate and orbit shape. Phys. Rev. E
81 (1), 016323.

Lundell, F. & Carlsson, A.
2011
The effect of particle inertia on triaxial ellipsoids in creeping shear: from drift toward chaos to a single periodic solution. Phys. Fluids
23, 011704.

Manga, M., Castro, J., Cashman, K. V. & Loewenberg, M.
1998
Rheology of bubble bearing magmas. J. Volcanol. Geotherm. Res.
87, 15–28.

Mao, W. & Alexeev, A.
2014
Motion of spheroid particles in shear flow with inertia. J. Fluid Mech.
749, 145–166.

Masaeli, M., Sollier, E., Amini, H., Mao, W., Camacho, K., Doshi, N., Mitragotri, S., Alexeev, A. & Carlo, D. D.
2012
Continuous inertial focusing and separation of particles by shape. Phys. Rev. X
2, 031017.

Morris, J. F. & Brady, J. F.
1997
Microstructure of strongly sheared suspensions and its impact on rheology and diffusion. J. Fluid Mech.
348, 103–139.

Morris, J. F., Yan, Y. & Koplik, J.
2007
Hydrodynamic interaction of two particles in confined linear shear flow at finite Reynolds number. Phys. Fluids
19 (11), 113305.

Morse, P. M. & Feshbach, H.
1953
Methods of Theoretical Physics. McGraw-Hill.

Mueller, S., Llewellin, E. W. & Mader, H. M.
2010
The rheology of suspensions of solid particles. Proc. R. Soc. Lond. A
466, 1201–1228.

Mueller, S., Llewellin, E. W. & Mader, H. M.
2011
The effect of particle shape on suspension viscosity and implications for magmatic flows. Geophys. Res. Lett
38, L13316.

Okagawa, A., Cox, R. G. & Mason, S. G.
1973a
The kinetics of flowing dispersinos. VI. Transient orientation and rheological phenomena of rods and discs in shear flow. J. Colloid Interface Sci.
45, 303–329.

Okagawa, A., Cox, R. G. & Mason, S. G.
1973b
The kinetics of flowing dispersions. VII. Oscillatory behavior of rods and discs in shear flow. J. Colloid Interface Sci.
45, 303–329.

Qi, D. & Luo, L.-S.
2003
Rotational and orientational behaviour of three-dimensional spheroidal particles in couette flows. J. Fluid Mech.
477, 201–213.

Rahnama, M., Koch, D. L. & Shaqfeh, E. S. G.
1995
The effect of hydrodynamic interactions on the orientation distribution in a fiber suspension subject to simple shear flow. Phys. Fluids
7, 487–506.

Rosen, T., Do-Quang, M., Aidun, C. K. & Lundell, F.
2015
The dynamical states of a prolate spheroid suspended in shear flow as a consequence of particle and fluid inertia. J. Fluid Mech.
771, 115–158.

Rosen, T., Lundell, F. & Aidun, C. K.
2014
Effect of fluid inertia on the dynamics and scaling of neutrally buoyant particles in shear flow. J. Fluid Mech.
738, 563–590.

Saffman, P.G.
1956
On the motion of small spheroidal particles in a viscous liquid. J. Fluid Mech.
1 (05), 540–553.

Saffman, P. G. T.
1965
The lift on a small sphere in a slow shear flow. J. Fluid Mech.
22 (02), 385–400.

Savas, Ö.
1985
On flow visualization using reflective flakes. J. Fluid Mech.
152, 235–248.

Shin, M., Subramanian, G. & Koch, D. L.
2009
Structure and dynamics of dilute suspensions of finite-Reynolds-number settling fibers. Phys. Fluids
21, 123304.

Singh, V., Koch, D. L., Subramanian, G. & Stroock, A. D.
2014
Rotational motion of a thin axisymmetric disk in a low Reynolds number linear flow. Phys. Fluids
26 (3), 033303.

Stone, H., John, B. & Lovalenti, P. M.2000 Inertial effects on the rheology of suspensions and on the motion of individual particles (unpublished).

Subramanian, G. & Brady, J. F.
2006
Trajectory analysis for non-Brownian inertial suspensions in simple shear flow. J. Fluid Mech.
559, 151–206.

Subramanian, G. & Koch, D. L.
2005
Inertial effects on fibre motion in simple shear flow. J. Fluid Mech.
535, 383–414.

Subramanian, G. & Koch, D. L.
2006a
Centrifugal forces alter streamline topology and greatly enhance the rate of heat and mass transfer from neutrally buoyant particles to a shear flow. Phys. Rev. Lett.
96, 134503.

Subramanian, G. & Koch, D. L.
2006b
Inertial effects on the orientation of nearly spherical particles in simple shear flow. J. Fluid Mech.
557, 257–296.

Subramanian, G. & Koch, D. L.
2006c
Inertial effects on the transfer of heat or mass from neutrally buoyant spheres in a steady linear velocity field. Phys. Fluids
18 (7), 073302.

Subramanian, G. & Koch, D. L.
2007
Heat transfer from a neutrally buoyant sphere in a second-order fluid. J. Non-Newtonian Fluid Mech.
144 (1), 49–57.

Subramanian, G., Koch, D. L., Zhang, J. & Yang, C.
2011
The influence of the inertially dominated outer region on the rheology of a dilute suspension of low-Reynolds-number drops and particles. J. Fluid Mech.
674, 307–358.

Taylor, G. I.
1923
The motion of ellipsoidal particles in a viscous fluid. Proc. R. Soc. Lond. A
103, 58–61.

Thoroddsen, S. T. & Bauer, J. M.
1999
Qualitative flow visualization using colored lights and reflective flakes. Phys. Fluids
11 (7), 1702–1704.

Trevelyan, B. J. & Mason, S. G.
1951
Particle motions in sheared suspensions. I. Rotations. J. Colloid Sci.
6 (4), 354–367.

Wax, N.
2013
Selected Papers on Noise and Stochastic Processes. Dover.

Yu, Z., Phan-Thien, N. & Tanner, R. I.
2007
Rotation of a spheroid in a Couette flow at moderate Reynolds numbers. Phys. Rev. E
76 (2), 026310.