Skip to main content Accessibility help
×
Home

The effect of inertia on the orientation dynamics of anisotropic particles in simple shear flow

  • Vivekanand Dabade (a1) (a2), Navaneeth K. Marath (a1) and Ganesh Subramanian (a1)

Abstract

It is well known that, under inertialess conditions, the orientation vector of a torque-free neutrally buoyant spheroid in an ambient simple shear flow rotates along so-called Jeffery orbits, a one-parameter family of closed orbits on the unit sphere centred around the direction of the ambient vorticity (Jeffery, Proc. R. Soc. Lond. A, vol. 102, 1922, pp. 161–179). We characterize analytically the irreversible drift in the orientation of such torque-free spheroidal particles of an arbitrary aspect ratio, across Jeffery orbits, that arises due to weak inertial effects. The analysis is valid in the limit $Re,St\ll 1$ , where $Re=(\dot{{\it\gamma}}L^{2}{\it\rho}_{f})/{\it\mu}$ and $St=(\dot{{\it\gamma}}L^{2}{\it\rho}_{p})/{\it\mu}$ are the Reynolds and Stokes numbers, which, respectively, measure the importance of fluid inertial forces and particle inertia in relation to viscous forces at the particle scale. Here, $L$ is the semimajor axis of the spheroid, ${\it\rho}_{p}$ and ${\it\rho}_{f}$ are the particle and fluid densities, $\dot{{\it\gamma}}$ is the ambient shear rate, and ${\it\mu}$ is the suspending fluid viscosity. A reciprocal theorem formulation is used to obtain the contributions to the drift due to particle and fluid inertia, the latter in terms of a volume integral over the entire fluid domain. The resulting drifts in orientation at $O(Re)$ and $O(St)$ are evaluated, as a function of the particle aspect ratio, for both prolate and oblate spheroids using a vector spheroidal harmonics formalism. It is found that particle inertia, at $O(St)$ , causes a prolate spheroid to drift towards an eventual tumbling motion in the flow–gradient plane. Oblate spheroids, on account of the $O(St)$ drift, move in the opposite direction, approaching a steady spinning motion about the ambient vorticity axis. The period of rotation in the spinning mode must remain unaltered to all orders in $St$ . For the tumbling mode, the period remains unaltered at $O(St)$ . At $O(St^{2})$ , however, particle inertia speeds up the rotation of prolate spheroids. The $O(Re)$ drift due to fluid inertia drives a prolate spheroid towards a tumbling motion in the flow–gradient plane for all initial orientations and for all aspect ratios. Interestingly, for oblate spheroids, there is a bifurcation in the orientation dynamics at a critical aspect ratio of approximately 0.14. Oblate spheroids with aspect ratios greater than this critical value drift in a direction opposite to that for prolate spheroids, and eventually approach a spinning motion about the ambient vorticity axis starting from any initial orientation. For smaller aspect ratios, a pair of non-trivial repelling orbits emerge from the flow–gradient plane, and divide the unit sphere into distinct basins of orientations that asymptote to the tumbling and spinning modes. With further decrease in the aspect ratio, these repellers move away from the flow–gradient plane, eventually coalescing onto an arc of the great circle in which the gradient–vorticity plane intersects the unit sphere, in the limit of a vanishing aspect ratio. Thus, sufficiently thin oblate spheroids, similar to prolate spheroids, drift towards an eventual tumbling motion irrespective of their initial orientation. The drifts at $O(St)$ and at $O(Re)$ are combined to obtain the drift for a neutrally buoyant spheroid. The particle inertia contribution remains much smaller than the fluid inertia contribution for most aspect ratios and density ratios of order unity. As a result, the critical aspect ratio for the bifurcation in the orientation dynamics of neutrally buoyant oblate spheroids changes only slightly from its value based only on fluid inertia. The existence of Jeffery orbits implies a rheological indeterminacy, and the dependence of the suspension shear viscosity on initial conditions. For prolate spheroids and oblate spheroids of aspect ratio greater than 0.14, inclusion of inertia resolves the indeterminacy. Remarkably, the existence of the above bifurcation implies that, for a dilute suspension of oblate spheroids with aspect ratios smaller than 0.14, weak stochastic fluctuations (residual Brownian motion being analysed here as an example) play a crucial role in obtaining a shear viscosity independent of the initial orientation distribution. The inclusion of Brownian motion leads to a new smaller critical aspect ratio of approximately 0.013. For sufficiently large $Re\,Pe_{r}$ , the peak in the steady-state orientation distribution shifts rapidly from the spinning- to the tumbling-mode location as the spheroid aspect ratio decreases below this critical value; here, $Pe_{r}=\dot{{\it\gamma}}/D_{r}$ , with $D_{r}$ being the Brownian rotary diffusivity, so that $Re\,Pe_{r}$ measures the relative importance of inertial drift and Brownian rotary diffusion. The shear viscosity, plotted as a function of $Re\,Pe_{r}$ , exhibits a sharp transition from a shear-thickening to a shear-thinning behaviour, as the oblate spheroid aspect ratio decreases below 0.013. Our results are compared in detail to earlier analytical work for limiting cases involving either nearly spherical particles or slender fibres with weak inertia, and to the results of recent numerical simulations at larger values of $Re$ and  $St$ .

Copyright

Corresponding author

Email address for correspondence: sganesh@jncasr.ac.in

References

Hide All
Aidun, C. K., Lu, Y. & Ding, E.-J. 1998 Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 373, 287311.
Amini, H., Lee, W. & Carlo, D. D. 2014 Inertial microfluidic physics. Lab on a Chip 14, 27392761.
Batchelor, G. K. 1970a Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech. 44, 791810.
Batchelor, G. K. 1970b The stress system in a suspension of force-free particles. J. Fluid Mech. 41, 545570.
Batchelor, G. K. 1972 Sedimentation in a dillute dispersion of spheres. J. Fluid Mech. 52, 245268.
Batchelor, G. K. 1977 Developments in microhydrodynamics. In Theor. and Appl. Mechanics: Proc. Fourteenth Int. Cong., Delft, Netherlands, vol. 83, pp. 3355.
Batchelor, G. K. & Green, J. 1972a The determination of the bulk stress in a suspension of spherical particles to order  $c^{2}$ . J. Fluid Mech. 56, 401427.
Batchelor, G. K. & Green, J. 1972b The hydrodynamic interaction of two small freely-moving spheres in a linear flow field. J. Fluid Mech. 56, 375400.
Brenner, H. 1974 Rheology of a dilute suspension of axisymmetric Brownian particles. Intl J. Multiphase Flow 1 (2), 195341.
Bretherton, F. P. 1962 The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14 (02), 284304.
Carlo, D. D. 2009 Inertial microfluidics. Lab on a Chip 9, 30383046.
Caro, C. G., Pedley, T. J., Schroter, R. C. & Seed, W. A. 2012 The Mechanics of the Circulation. Cambridge University Press.
Challabotla, N. R., Nilsen, C. & Andersson, H. I. 2015 On rotational dynamics of inertial disks in creeping shear flow. Phys. Lett. A 379, 011704.
Chwang, A. T. 1975 Hydromechanics of low-Reynolds-number flow. Part 3. Motion of a spheroidal particle in quadratic flows. J. Fluid Mech. 72, 1734.
Chwang, A. T. & Wu, T. Y.-T. 1974 Hydromechanics of low-Reynolds-number flow. Part 1. Rotation of axisymmetric prolate bodies. J. Fluid Mech. 63, 607622.
Chwang, A. T. & Wu, T. Y.-T. 1975 Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows. J. Fluid Mech. 67, 787815.
Dabade, V., Marath, N. K. & Subramanian, G. 2015 Effects of inertia and viscoelasticity on sedimenting anisotropic particles. J. Fluid Mech. 778, 133188.
De Gennes, P. G. 1974 Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J. Chem. Phys. 60 (12), 50305042.
Ding, E.-J. & Aidun, C. K. 2000 The dynamics and scaling law for particles suspended in shear flow with inertia. J. Fluid Mech. 423, 317344.
Einarsson, J., Angilella, J. R. & Mehlig, B. 2014 Orientational dynamics of weakly inertial axisymmetric particles in steady viscous flows. Physica D 278, 7985.
Einarsson, J., Candelier, F., Lundell, F., Angilella, J. R. & Mehlig, B. 2015a Effect of weak fluid inertia upon Jeffery orbits. Phys. Rev. E 91 (4), 041002.
Einarsson, J., Candelier, F., Lundell, F., Angilella, J. R. & Mehlig, B. 2015b Rotation of a spheroid in a simple shear at small Reynolds number. Phys. Fluids 27 (6), 063301.
Gauthier, G., Gondret, P. & Rabaud, M. 1998 Motions of anisotropic particles: application to visualization of three-dimensional flows. Phys. Fluids 10 (9), 21472154.
Goldstein, H. 1962 Classical Mechanics, vol. 4. Pearson Education India.
Goto, S., Kida, S. & Fujiwara, S. 2011 Flow visualization using reflective flakes. J. Fluid Mech. 683, 417429.
Gradshteyn, I. S. & Ryzhik, I. M. 2007 Table of Integrals, Series and Products. Academic.
Harper, E.Y. & Chang, I.-D. 1968 Maximum dissipation resulting from lift in a slow viscous shear flow. J. Fluid Mech. 33 (02), 209225.
Hinch, E. J. 1974 Mechanical models of dilute polymer solutions for strong flows with large polymer deformations. In Polymères et Lubrification, pp. 351372.
Hinch, E. J. 1977 An averaged-equation approach to particle interactions in a fluid suspension. J. Fluid Mech. 83, 695720.
Hinch, E. J. & Leal, L. G. 1972 The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles. J. Fluid Mech. 52, 683712.
Hsieh, C.-C. & Larson, R. G. 2005 Prediction of coil-stretch hysteresis for dilute polystyrene molecules in extensional flow. J. Rheol. 49 (5), 10811089.
Huang, H., Yang, X., Krafczyk, M. & Lu, X.-Y. 2012 Rotation of spheroidal particles in Couette flows. J. Fluid Mech. 692, 369394.
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161179.
Kao, S. V., Cox, R. G. & Mason, S. G. 1977 Streamlines around single spheres and trajectories of pairs of spheres in two-dimensional creeping flows. Chem. Engng Sci. 32, 1505.
Karnis, A., Goldsmith, H. L. & Mason, S. G. 1963 Axial migration of particles in Poiseuille flow. Nature 200, 159160.
Karnis, A., Goldsmith, H. L. & Mason, S. G. 1966 The flow of suspensions through tubes: V. Inertial effects. Can. J. Chem. Engng 44 (4), 181193.
Kim, S. & Karrila, S. J. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.
Kushch, V. I. 1997 Microstresses and effective elastic moduli of a solid reinforced by periodically distributed spheroidal particles. Intl J. Solids Struct. 34, 13531366.
Kushch, V. I. 1998 Elastic equilibrium of a medium containing a finite number of arbitrarily oriented spheroidal inclusions. Intl J. Solids Struct. 35, 11871198.
Kushch, V. I. & Sangani, A. S. 2003 The complete solutions for Stokes interactions of spheroidal particles by the mutipole expansion method. Intl J. Mutiphase Flow 34, 13531366.
Leal, L. G. 1975 The slow motion of slender rod-like particles in a second-order fluid. J. Fluid Mech. 69, 305337.
Leal, L. G. 1979 The motion of small particles in non-Newtonian fluids. J. Non-Newtonian Fluid Mech. 5, 3378.
Leal, L. G. 1992 Laminar flow and convective transport processes, scaling principles and asymptotic analysis. In Butterworth-Heinemann Series in Chemical Engineering, Butterworth–Heinemann.
Leal, L. G. & Hinch, E. J. 1971 The effect of weak Brownian rotations on particles in shear flow. J. Fluid Mech. 46, 685703.
Lin, C.-J., Peery, J. H. & Schowalter, W. R. 1970 Simple shear flow round a rigid sphere: inertial effects and suspension rheology. J. Fluid Mech. 44, 117.
Llewellin, E. W., Mader, H. M. & Wilson, S. D. R. 2002 The constitutive equation and flow dynamics of bubbly magmas. Geophys. Res. Lett. 29, 2170.
Lundell, F. 2011 The effect of particle inertia on triaxial ellipsoids in creeping shear: from drift toward chaos to a single periodic solution. Phys. Fluids 23 (1), 011704.
Lundell, F. & Carlsson, A. 2010 Heavy ellipsoids in creeping shear flow: transitions of the particle rotation rate and orbit shape. Phys. Rev. E 81 (1), 016323.
Lundell, F. & Carlsson, A. 2011 The effect of particle inertia on triaxial ellipsoids in creeping shear: from drift toward chaos to a single periodic solution. Phys. Fluids 23, 011704.
Manga, M., Castro, J., Cashman, K. V. & Loewenberg, M. 1998 Rheology of bubble bearing magmas. J. Volcanol. Geotherm. Res. 87, 1528.
Mao, W. & Alexeev, A. 2014 Motion of spheroid particles in shear flow with inertia. J. Fluid Mech. 749, 145166.
Masaeli, M., Sollier, E., Amini, H., Mao, W., Camacho, K., Doshi, N., Mitragotri, S., Alexeev, A. & Carlo, D. D. 2012 Continuous inertial focusing and separation of particles by shape. Phys. Rev. X 2, 031017.
Morris, J. F. & Brady, J. F. 1997 Microstructure of strongly sheared suspensions and its impact on rheology and diffusion. J. Fluid Mech. 348, 103139.
Morris, J. F., Yan, Y. & Koplik, J. 2007 Hydrodynamic interaction of two particles in confined linear shear flow at finite Reynolds number. Phys. Fluids 19 (11), 113305.
Morse, P. M. & Feshbach, H. 1953 Methods of Theoretical Physics. McGraw-Hill.
Mueller, S., Llewellin, E. W. & Mader, H. M. 2010 The rheology of suspensions of solid particles. Proc. R. Soc. Lond. A 466, 12011228.
Mueller, S., Llewellin, E. W. & Mader, H. M. 2011 The effect of particle shape on suspension viscosity and implications for magmatic flows. Geophys. Res. Lett 38, L13316.
Okagawa, A., Cox, R. G. & Mason, S. G. 1973a The kinetics of flowing dispersinos. VI. Transient orientation and rheological phenomena of rods and discs in shear flow. J. Colloid Interface Sci. 45, 303329.
Okagawa, A., Cox, R. G. & Mason, S. G. 1973b The kinetics of flowing dispersions. VII. Oscillatory behavior of rods and discs in shear flow. J. Colloid Interface Sci. 45, 303329.
Qi, D. & Luo, L.-S. 2003 Rotational and orientational behaviour of three-dimensional spheroidal particles in couette flows. J. Fluid Mech. 477, 201213.
Rahnama, M., Koch, D. L. & Shaqfeh, E. S. G. 1995 The effect of hydrodynamic interactions on the orientation distribution in a fiber suspension subject to simple shear flow. Phys. Fluids 7, 487506.
Rosen, T., Do-Quang, M., Aidun, C. K. & Lundell, F. 2015 The dynamical states of a prolate spheroid suspended in shear flow as a consequence of particle and fluid inertia. J. Fluid Mech. 771, 115158.
Rosen, T., Lundell, F. & Aidun, C. K. 2014 Effect of fluid inertia on the dynamics and scaling of neutrally buoyant particles in shear flow. J. Fluid Mech. 738, 563590.
Saffman, P.G. 1956 On the motion of small spheroidal particles in a viscous liquid. J. Fluid Mech. 1 (05), 540553.
Saffman, P. G. T. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22 (02), 385400.
Savas, Ö. 1985 On flow visualization using reflective flakes. J. Fluid Mech. 152, 235248.
Shin, M., Subramanian, G. & Koch, D. L. 2009 Structure and dynamics of dilute suspensions of finite-Reynolds-number settling fibers. Phys. Fluids 21, 123304.
Singh, V., Koch, D. L., Subramanian, G. & Stroock, A. D. 2014 Rotational motion of a thin axisymmetric disk in a low Reynolds number linear flow. Phys. Fluids 26 (3), 033303.
Stone, H., John, B. & Lovalenti, P. M.2000 Inertial effects on the rheology of suspensions and on the motion of individual particles (unpublished).
Subramanian, G. & Brady, J. F. 2006 Trajectory analysis for non-Brownian inertial suspensions in simple shear flow. J. Fluid Mech. 559, 151206.
Subramanian, G. & Koch, D. L. 2005 Inertial effects on fibre motion in simple shear flow. J. Fluid Mech. 535, 383414.
Subramanian, G. & Koch, D. L. 2006a Centrifugal forces alter streamline topology and greatly enhance the rate of heat and mass transfer from neutrally buoyant particles to a shear flow. Phys. Rev. Lett. 96, 134503.
Subramanian, G. & Koch, D. L. 2006b Inertial effects on the orientation of nearly spherical particles in simple shear flow. J. Fluid Mech. 557, 257296.
Subramanian, G. & Koch, D. L. 2006c Inertial effects on the transfer of heat or mass from neutrally buoyant spheres in a steady linear velocity field. Phys. Fluids 18 (7), 073302.
Subramanian, G. & Koch, D. L. 2007 Heat transfer from a neutrally buoyant sphere in a second-order fluid. J. Non-Newtonian Fluid Mech. 144 (1), 4957.
Subramanian, G., Koch, D. L., Zhang, J. & Yang, C. 2011 The influence of the inertially dominated outer region on the rheology of a dilute suspension of low-Reynolds-number drops and particles. J. Fluid Mech. 674, 307358.
Taylor, G. I. 1923 The motion of ellipsoidal particles in a viscous fluid. Proc. R. Soc. Lond. A 103, 5861.
Thoroddsen, S. T. & Bauer, J. M. 1999 Qualitative flow visualization using colored lights and reflective flakes. Phys. Fluids 11 (7), 17021704.
Trevelyan, B. J. & Mason, S. G. 1951 Particle motions in sheared suspensions. I. Rotations. J. Colloid Sci. 6 (4), 354367.
Wax, N. 2013 Selected Papers on Noise and Stochastic Processes. Dover.
Yu, Z., Phan-Thien, N. & Tanner, R. I. 2007 Rotation of a spheroid in a Couette flow at moderate Reynolds numbers. Phys. Rev. E 76 (2), 026310.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

The effect of inertia on the orientation dynamics of anisotropic particles in simple shear flow

  • Vivekanand Dabade (a1) (a2), Navaneeth K. Marath (a1) and Ganesh Subramanian (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed