Abarzhi, S.
2010
On fundamentals of Rayleigh–Taylor turbulent mixing. Europhys. Lett.
91, 35001.
Akula, B.2014 Experimental investigation of buoyancy driven mixing with and without shear at different Atwood numbers. PhD thesis, Texas A&M University.
Akula, B., Andrews, M. J. & Ranjan, D.
2013
Effect of shear on Rayleigh–Taylor mixing at small Atwood number. Phys. Rev. E
87, 033013.
Akula, B. & Ranjan, D.
2016
Dynamics of buoyancy-driven flows at moderately high Atwood numbers. J. Fluid Mech.
795, 313–355.
Banerjee, A. & Andrews, M. J.
2006
Statistically steady measurements of Rayleigh–Taylor mixing in a gas channel. Phys. Fluids
18, 035107.
Banerjee, A., Gore, R. A. & Andrews, M. J.
2010a
Development and validation of a turbulent-mix model for variable-density and compressible flows. Phys. Rev. E
82, 046309.
Banerjee, A., Kraft, W. N. & Andrews, M. J.
2010b
Detailed measurements of a statistically steady Rayleigh–Taylor mixing layer from small to high Atwood numbers. J. Fluid Mech.
659, 127–190.
Batchelor, G. K.
1969
Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids
12, 233–239.
Bell, J. H. & Mehta, R. D.
1990
Development of two-stream mixing layer from tripped and untripped boundary layers. AIAA J.
28, 2034–2042.
Bendat, J. S. & Piersol, A. G.
2010
Random Data: Analysis and Measurement Procedures, 4th edn. Wiley.
Betti, R. & Hurricane, O. A.
2016
Inertial-confinement fusion with lasers. Nat. Phys.
12, 435–448.
Birkhoff, G.1955 Taylor instability and laminar mixing. University of California Report No. LA-1862.
Boffetta, G. & Mazzino, A.
2017
Incompressible Rayleigh–Taylor turbulence. Annu. Rev. Fluid Mech.
49, 119–143.
Bolgiano, R.
1959
Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res.
64 (12), 2226–2229.
Browand, F. K. & Winant, C. D.
1973
Laboratory observations of shear-layer instability in a stratified fluid. Boundary-Layer Meteorol.
5, 67–77.
Brown, G. L. & Roshko, A.
1974
On density effects and large structure in turbulent mixing layers. J. Fluid Mech.
64, 775–816.
Cabot, W. H. & Cook, A. W.
2006
Reynolds number effects on Rayleigh–Taylor instability with possible implications for type-Ia supernovae. Nat. Phys.
2, 562–568.
Champagne, F. H., Pao, Y. H. & Wygnanski, I. J.
1976
On the two-dimensional mixing region. J. Fluid Mech.
74, 209–250.
Chandrasekhar, S.
1961
Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
Cherfils, C. & Mikaelian, K. O.
1996
Simple model for the turbulent mixing width at an ablating surface. Phys. Fluids
8, 522–535.
Cook, A. W., Cabot, W. & Miller, P. L.
2004
The mixing transition in Rayleigh–Taylor instability. J. Fluid Mech.
511, 333–362.
Cook, A. W. & Dimotakis, P. E.
2001
Transition stages of Rayleigh–Taylor instability between miscible fluids. J. Fluid Mech.
443, 69–99.
Davidson, P. A.
2015
Turbulence: An Introduction for Scientists and Engineers, 2nd edn. Oxford University Press.
Dimonte, G. & Schneider, M.
2000
Density ratio dependence of Rayleigh–Taylor mixing for sustained and impulsive acceleration histories. Phys. Fluids
12, 304–321.
Dimotakis, P. E.
1991
Turbulent free shear layer mixing and combustion. High Speed Flight Propulsion Systems
137, 265–340.
Drazin, P. G. & Reid, W. H.
2004
Hydrodynamic Stability. Cambridge University Press.
Fermi, E. & Neumann, J. V.1955 Taylor instability of incompressible liquids. United States Atomic Energy Commission: Unclassified, AECU-2979.
Groeneveld, R. A. & Meeden, G.
1984
Measuring skewness and kurtosis. Statistician
33 (4), 391–399.
Groth, J. & Johansson, A. V.
1988
Turbulence reduction by screens. J. Fluid Mech.
197, 139–155.
Hishida, M. & Nagano, Y.
1978
Simultaneous measurements of velocity and temperature in non isothermal flows. J. Heat Transfer
100, 340–345.
Joanes, D. N. & Gill, C. A.
1998
Comparing measures of sample skewness and kurtosis. J. R. Stat. Soc. D
47 (1), 183–189.
Karimi, M. & Girimaji, S. S.
2016
Suppression mechanism of Kelvin–Helmholtz instability in compressible fluid flows. Phys. Rev. E
93, 041102(R).
Kelley, M. C., Chen, C. Y., Beland, R. R., Woodman, R., Chau, J. L. & Werne, J.
2005
Persistence of a Kelvin–Helmholtz instability complex in the upper troposphere. J. Geophys. Res.
110 (D14), 1–7.
Kolmogorov, A. N.
1941a
Dissipation of energy in the locally isotropic turbulence. Proc. USSR Acad. Sci.
32, 16–18.
Kolmogorov, A. N.
1941b
The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. USSR Acad. Sci.
30, 299–303.
Kolmogorov, A. N.
1962
A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech.
13, 82–85.
Koop, C. G. & Browand, F. K.
1979
Instability and turbulence in a stratified fluid with shear. J. Fluid Mech.
93, 135–159.
Kraft, W. N.2008 Simultaneous and instantaneous measurement of velocity and density in Rayleigh–Taylor mixing layers. PhD thesis, Texas A&M University.
Kraft, W. N., Banerjee, A. & Andrews, M. J.
2009
On hot-wire diagnostics in Rayleigh–Taylor mixing layers. Exp. Fluids
47, 49–68.
Kraichnan, R. H.
1959
The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech.
5 (4), 497–543.
Kumar, A., Chatterjee, A. G. & Verma, M. K.
2014
Energy spectrum of buoyancy-driven turbulence. Phys. Rev. E
90, 023016.
Lawrence, G. A., Browand, F. K. & Redekopp, L. G.
1991
The stability of a sheared density interface. Phys. Fluids A
3, 2360–2370.
Lewis, D. J.
1950
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. II. Proc. R. Soc. Lond. A
202, 81–96.
Loehrke, R. I. & Nagib, H. M.1972 Experiments on management of free-stream turbulence. AGARD Report No. 598.
Lohse, D. & Xia, K. Q.
2010
Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech.
42, 335–364.
Lyons, R., Panofsky, H. A. & Wollaston, S.
1964
The critical Richardson number and its implications for forecast problems. J. Appl. Meteorol.
3, 136–142.
Mikaelian, K. O.
1989
Turbulent mixing generated by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Physica D
36, 343–357.
Moran, M. J. & Shapiro, H. N.
2000
Fundamentals of Engineering Thermodynamics. Wiley.
Mueschke, N. J., Andrews, M. J. & Schilling, O.
2006
Experimental characterization of initial conditions and spatio-temporal evolution of a small-Atwood-number Rayleigh–Taylor mixing layer. J. Fluid Mech.
567, 27–63.
Mueschke, N. J. & Schilling, O.
2009a
Investigation of Rayleigh–Taylor turbulence and mixing using direct numerical simulation with experimentally measured initial conditions. I. Comparison to experimental data. Phys. Fluids
21, 014106.
Mueschke, N. J. & Schilling, O.
2009b
Investigation of Rayleigh–Taylor turbulence and mixing using direct numerical simulation with experimentally measured initial conditions. II. Dynamics of transitional flow and mixing statistics. Phys. Fluids
21, 014107.
Nagata, K. & Komori, S.
2000
The effects of unstable stratification and mean shear on the chemical reaction in grid turbulence. J. Fluid Mech.
408, 39–52.
Obukhov, A. M.
1941
On the spectral energy distribution in a turbulent flow. Izv. Akad. Nauk SSSR Geogr. Geofiz.
5, 453–466.
Obukhov, A. M.
1959
Effect of Archimedean forces on the structure of the temperature field in a turbulent flow. Dokl. Akad. Nauk SSSR
125 (6), 1246–1248.
Obukhov, A. M.
1962
Some specific features of atmospheric turbulence. J. Geophys. Res.
67 (8), 3011–3014.
Olson, B. J., Larsson, J., Lele, S. K. & Cook, A. W.
2011
Nonlinear effects in the combined Rayleigh–Taylor/Kelvin–Helmholtz instability. Phys. Fluids
23, 114107.
Papoulis, A. & Pillai, S. U.
2002
Probability, Random Variables and Stochastic Processes, 4th edn. McGraw-Hill.
Pope, S. B.
2000
Turbulent Flows. Cambridge University Press.
Poujade, O.
2006
Rayleigh–Taylor turbulence is nothing like Kolmogorov turbulence in the self-similar regime. Phys. Rev. Lett.
97, 185002.
Ramaprabhu, P. K. & Andrews, M. J.
2004
Experimental investigation of Rayleigh–Taylor mixing at small Atwood numbers. J. Fluid Mech.
502, 233–271.
Ristorcelli, J. R. & Clark, T. T.
2004
Rayleigh–Taylor turbulence: self-similar analysis and direct numerical simulations. J. Fluid Mech.
507, 213–253.
Schubauer, G. B., Spangenberg, W. G. & Klebanoff, P. S.1950 Aeodynamic characteristics of damping screens. NACA TN 2001.
Sharp, D. H.
1984
An overview of Rayleigh–Taylor instability. Physica D
12, 3–18.
Shumlak, U. & Roderick, N. F.
1998
Mitigation of the Rayleigh–Taylor instability by sheared axial flows. Phys. Plasmas
5, 2384–2389.
Snider, D. M.1994 A study of compound buoyancy and shear mixing. PhD thesis, Texas A&M University.
Snider, D. M. & Andrews, M. J.
1994
Rayleigh–Taylor and shear driven mixing with an unstable thermal stratification. Phys. Fluids
6, 3324–3334.
Snider, D. M. & Andrews, M. J.
1996a
The simulation of mixing layers driven by compound buoyancy and shear. Trans. ASME J. Fluids Engng
118, 370–376.
Snider, D. M. & Andrews, M. J.
1996b
The structure of shear driven mixing with an unstable thermal stratification. Trans. ASME J. Fluids Engng
118, 55–60.
Sreenivasan, K. R. & Abarzhi, S. I.
2013
Acceleration and turbulence in Rayleigh–Taylor mixing. Phil. Trans. R. Soc. Lond. A
371, 20130267.
de Stadler, M. B., Sarkar, S & Brucker, K. A.
2010
Effect of the Prandtl number on a stratified turbulent wake. Phys. Fluids
22, 095102.
Taylor, G. I.
1931
Effect of variation in density on the stability of superposed streams of fluids. Philos. Trans. R. Soc. Lond. A
246, 499–523.
Taylor, G. I.
1938
The spectrum of turbulence. Proc. R. Soc. Lond. A
164, 476–490.
Tennekes, H. & Lumley, J. L.
1972
A First Course in Turbulence. MIT Press.
Thorpe, S. A.
1968
A method of producing a shear flow in a stratified fluid. J. Fluid Mech.
32, 693–704.
Thorpe, S. A.
1971
Experiments on the instability of stratified shear flows: miscible fluids. J. Fluid Mech.
46, 299–319.
Thorpe, S. A.
1973a
Experiments on instability and turbulence in a stratified shear flow. J. Fluid Mech.
61, 731–751.
Thorpe, S. A.
1973b
Turbulence in stably stratified fluids: a review of laboratory experiments. Boundary-Layer Meteorol.
5, 95–119.
Townsend, A. A.
1980
The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.
Turner, J. S.
1980
Buoyancy Effects in Fluids. Cambridge University Press.
Vandenboomgaerde, M., Bonnefille, M. & Gauthier, P.
2016
The Kelvin–Helmholtz instability in National Ignition Facility hohlraums as a source of gold-gas mixing. Phys. Plasmas
23 (5), 052704.
Velasco, A. M. & Muñoz, J. D.
2015
Study of hydrodynamic instabilities with a multiphase lattice Boltzmann model. C. R. Méc.
343 (10), 571–579.
Vukoslavc̆ević, P. V., Radulović, I. M. & Wallace, J. M.
2005
Testing of a hot- and cold-wire probe to measure simultaneously the speed and temperature in supercritical CO_{2} flow. Exp. Fluids
39, 703–711.
Werne, J. & Fritts, D. C.
1999
Stratified shear turbulence: Evolution and statistics. Geophys. Res. Lett.
26 (4), 439–442.
Wilke, C. R.
1950
A viscosity equation for gas mixtures. J. Chem. Phys.
18, 517–519.
Winant, C. D. & Browand, F. K.
1974
Vortex pairing – the mechanism of turbulent mixing-layer growth at moderate Reynolds number. J. Fluid Mech.
63, 237–255.
Wygnanski, I. & Fiedler, H. E.
1970
The two-dimensional mixing region. J. Fluid Mech.
41, 327–361.
Youngs, D. L.
1984
Numerical simulation of turbulent mixing by Rayleigh–Taylor instability. Physica D
12, 32–44.
Zhou, Y.
2001
A scaling analysis of turbulent flows driven by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Fluids
13 (2), 538–543.
Zhou, Q.
2013
Temporal evolution and scaling of mixing in two-dimensional Rayleigh–Taylor turbulence. Phys. Fluids
25, 085107.
Zhou, Q., Huang, Y. X., Lu, Z. M., Liu, Y. L. & Ni, R.
2016
Scale-to-scale energy and enstrophy transport in two-dimensional Rayleigh–Taylor turbulence. J. Fluid Mech.
786, 294–308.