Skip to main content Accessibility help
×
Home

Dynamics of shear-induced migration of spherical particles in oscillatory pipe flow

  • Braden Snook (a1) (a2), Jason E. Butler (a1) and Élisabeth Guazzelli (a2)

Abstract

The large-amplitude oscillatory flow of a suspension of spherical particles in a pipe is studied at low Reynolds number. Particle volume fraction and velocity are examined through refractive index matching techniques. The particles migrate toward the centre of the pipe, i.e. toward regions of lower shear rate, for bulk volume fractions larger than 10 %. Steady results are in agreement with available experimental results and discrete-particle simulations for similar geometries. The dynamics of the shear-induced migration process are analysed and compared against the predictions of the suspension balance model using realistic rheological laws.

Copyright

Corresponding author

Email address for correspondence: butler@che.ufl.edu

References

Hide All
Altobelli, S. A., Givler, R. C. & Fukushima, E. 1991 Velocity and concentration measurements of suspensions by nuclear magnetic resonance imaging. J. Rheol. 35, 721734.
Blanc, F., Lemaire, E., Meunier, A. & Peters, F. 2013 Microstructure in sheared non-Brownian concentrated suspensions. J. Rheol. 57, 273292.
Boyer, F., Guazzelli, É. & Pouliquen, O. 2011a Unifying suspension and granular rheology. Phys. Rev. Lett. 107, 188301.
Boyer, F., Pouliquen, O. & Guazzelli, E. 2011b Dense suspensions in rotating-rod flows: normal stresses and particle migration. J. Fluid Mech. 686, 525.
Bricker, J. M. & Butler, J. E. 2006 Oscillatory shear of suspensions of noncolloidal particles. J. Rheol. 50, 711728.
Bricker, J. M. & Butler, J. E. 2007 Correlation between stresses and microstructure in concentrated suspensions of non-Brownian spheres subject to unsteady shear flows. J. Rheol. 514, 735759.
Butler, J. E. & Bonnecaze, R. T. 1999 Imaging of particle shear migration with electrical impedance tomography. Phys. Fluids 11 (8), 19821994.
Butler, J. E., Majors, P. D. & Bonnecaze, R. T. 1999 Observations of shear-induced particle migration for oscillatory flow of a suspension within a tube. Phys. Fluids 11 (10), 28652877.
Chapman, B. K.1990 Shear induced migration in concentrated suspensions. PhD thesis, University of Notre Dame.
Chow, A. W., Sinton, S. W., Iwamiya, J. H. & Stephens, T. S. 1994 Shear-induced particle migration in Couette and parallel-plate viscometers: NMR imaging and stress measurements. Phys. Fluids 6, 25612576.
Couturier, E., Boyer, F., Pouliquen, O. & Guazzelli, E. 2011 Suspensions in a tilted trough: second normal stress difference. Phys. Fluids 686, 2639.
Cunha, F. D. & Hinch, E. 1996 Shear-induced dispersion in a dilute suspension of rough spheres. J. Fluid Mech. 309, 211223.
Dbouk, T., Lobry, L. & Lemaire, E. 2013 Normal stresses in concentrated non-Brownian suspensions. J. Fluid Mech. 715, 239272.
Deshpande, K. P. & Shapley, N. C. 2010 Particle migration in oscillatory torsional flows of concentrated suspensions. J. Rheol. 54, 663686.
Gadala-Maria, F. & Acrivos, A. 1980 Shear-induced structure in a concentrated suspension of solid spheres. J. Rheol. 24, 799814.
Gallier, S.2014 Simulation numérique des suspensions frictionnelles. Application aux propergols solides. PhD Université de Nice.
Gallier, S., Lemaire, E., Peters, F. & Lobry, L. 2014 Rheology of sheared suspensions of rough frictional particles. J. Fluid Mech. 757, 514549.
Goddard, J. D. 2006 A dissipative anisotropic fluid model for non-colloidal particle dispersions. J. Fluid Mech. 568, 117.
Guasto, J., Ross, A. & Gollub, J. 2010 Hydrodynamic irreversibility in particle suspensions with nonuniform strain. Phys. Rev. Lett. 81 (6), 061401.
Hampton, R. E., Mammoli, A. A., Graham, A. L., Tetlow, N. & Altobell, S. A. 1997 Migration of particles undergoing pressure-driven flow in a circular conduit. J. Rheol. 41, 621640.
Karnis, A., Goldsmith, H. & Mason, S. 1966 The kinetics of flowing dispersions: I. Concentrated suspensions of rigid particles. J. Colloid Interface Sci. 22 (6), 531553.
Koh, C. J. & Leal, L. G. 1994 An experimental investigation of concentrated suspension flows in rectangular channel. J. Fluid Mech. 266, 132.
Kolli, V., Pollauf, E. & Gadala-Maria, F. 2002 Transient normal stress response in a concentrated suspension of spherical particles. J. Rheol. 46, 321334.
Krishnan, G. P., Beimfohr, S. & Leighton, D. T. 1996 Shear-induced radial segregation in bidisperse suspensions. J. Fluid Mech. 321, 371393.
Lecampion, B. & Garagash, D. I. 2014 Confined flow of suspensions modelled by a frictional rheology. J. Fluid Mech. 759, 197235.
Leighton, D. & Acrivos, A. 1987 The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 181, 415439.
Lhuillier, D. 2009 Migration of rigid particles in non-Brownian viscous suspensions. Phys. Fluids 21, 023302.
Lyon, M. K. & Leal, L. G. 1998 An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. Part 1. Monodisperse systems. J. Fluid Mech. 363, 2556.
Metzger, B., Pham, P. & Butler, J. E. 2013 Irreversibility and chaos: Role of lubrication interactions in sheared suspensions. Phys. Rev. E 87, 052304.
Miller, R. & Morris, J. 2006 Normal stress-driven migration and axial development in pressure-driven flow of concentrated suspensions. J. Non-Newtonian Fluid Mech. 135, 149165.
Mills, P. & Snabre, P. 1995 Rheology and structure of concentrated suspensions of hard spheres. Shear induced particle migration. J. Phys. II 5, 15971608.
Morris, J. F. 2001 Anomalous migration in simulated oscillatory pressure-driven flow of a concentrated suspension. Phys. Fluids 13, 24572562.
Morris, J. F. & Boulay, F. 1999 Curvilinear flows of noncolloidal suspensions: the role of normal stresses. J. Rheol. 43, 12131237.
Norman, J. T., Nayak, H. V. & Bonnecaze, R. T. 2005 Migration of buoyant particles in low-Reynolds-number pressure-driven flows. J. Fluid Mech. 523, 135.
Nott, P. R. & Brady, J. F. 1994 Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech. 275, 157199.
Nott, P. R., Guazzelli, E. & Pouliquen, O. 2011 The suspension balance model revisited. Phys. Fluids 23 (4), 043304.
Okagawa, A. & Mason, S. 1973 Suspensions: fluids with fading memories. Science 181, 159161.
Phillips, R. J., Armstrong, R. C., Brown, R. A., Graham, A. L. & Abbott, J. R. 1992 A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys. Fluids A 4, 3040.
Pine, D., Gollub, J., Brady, J. & Leshansky, A. 2005 Chaos and threshold for irreversibility in sheared suspensions. Nature 438 (7070), 9971000.
Richardson, J. F. & Zaki, W. N. 1954 Sedimentation and fluidization. Part I. Trans. Inst. Chem. Engrs 32, 3553.
Shauly, A., Averbakh, A., Nir, A. & Semiat, R. 1997 Slow viscous flows of highly concentrated suspensions. 2. Particle migration, velocity and concentration profiles in rectangular ducts. Intl J. Multiphase Flow 23, 613629.
Stickel, J. J., Phillips, R. J. & Powell, R. L. 2006 A constitutive model for microstructure and total stress in particulate suspensions. J. Rheol. 50, 379413.
Stickel, J. J., Phillips, R. J. & Powell, R. L. 2007 Application of a constitutive model for particulate suspensions: Time-dependent viscometric flows. J. Rheol. 51, 12711302.
Yapici, K., Powell, R. L. & Phillips, R. J. 2009 Particle migration and suspension structure in steady and oscillatory plane Poiseuille flow. Phys. Fluids 21, 053302.
Yeo, K. & Maxey, M. R. 2011 Numerical simulations of concentrated suspensions of mono disperse particles in a Poiseuille flow. J. Fluid Mech. 682, 491518.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
VIDEO
Movies

Snook et al. supplementary movie
Movie of the experimental images at a bulk volume fraction of 20%. All sequential images are shown for a given oscillation. Oscillations 1, 6, 11, 16, 21, 26, and 31 are shown.

 Video (7.2 MB)
7.2 MB
VIDEO
Movies

Snook et al. supplementary movie
Movie of the experimental images at a bulk volume fraction of 20%. All sequential images are shown for a given oscillation. Oscillations 1, 6, 11, 16, 21, 26, and 31 are shown.

 Video (5.0 MB)
5.0 MB
UNKNOWN
Supplementary materials

Snook et al. supplementary data
Data sets

 Unknown (60 KB)
60 KB
VIDEO
Movies

Snook et al. supplementary movie
Movie of the experimental images at a bulk volume fraction of 10%. The first image of oscillations 1 to 50 are shown sequentially to show the reversibility of the particles.

 Video (782 KB)
782 KB
VIDEO
Movies

Snook et al. supplementary movie
Movie of the experimental images at a bulk volume fraction of 10%. The first image of oscillations 1 to 50 are shown sequentially to show the reversibility of the particles.

 Video (1.4 MB)
1.4 MB
VIDEO
Movies

Snook et al. supplementary movie
Movie of the experimental images at a bulk volume fraction of 20%. The first image

 Video (1.2 MB)
1.2 MB
VIDEO
Movies

Snook et al. supplementary movie
Movie of the experimental images at a bulk volume fraction of 20%. The first image

 Video (935 KB)
935 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed