Skip to main content Accessibility help
×
Home

Dynamics of large-scale circulation of turbulent thermal convection in a horizontal cylinder

  • Hao Song (a1), Eric Brown (a2), Russell Hawkins (a3) and Penger Tong (a1)

Abstract

A systematic study of the effects of cell geometry on the dynamics of large-scale flows in turbulent thermal convection is carried out in horizontal cylindrical cells of different lengths filled with water. Four different flow modes are identified with increasing aspect ratio $\Gamma $ . For small aspect ratios ( $\Gamma \leq 0.16$ ), the flow is highly confined in a thin disc-like cell with a quasi-two-dimensional (quasi-2D) large-scale circulation (LSC) in the circular plane of the cell. For larger aspect ratios ( $\Gamma >0.16$ ), we observe periodic switching of the angular orientation $\theta $ of the rotation plane of LSC between the two longest diagonals of the cell. The sides of the container along which the LSC oscillates changes at a critical aspect ratio $\Gamma _{c}\simeq 0.82$ . The measured switching period is equal to the LSC turnover time for $\Gamma \leq \Gamma _c$ , shows a sharp increase at $\Gamma _{c}$ and decays exponentially to the LSC turnover time with increasing $\Gamma $ . For $\Gamma \geq 1.3$ , a periodic rocking of LSC along the long axis of the cylinder is also observed. The measured probability density function $P(\theta )$ of the LSC orientation $\theta $ peaks at the two diagonal positions, and its shape is described by a phenomenological model proposed by Brown & Ahlers (Phys. Fluids, vol. 20, 2008b, 075101; J. Fluid Mech., vol. 638, 2009, pp. 383–400). Using this model, we describe the dynamics of the LSC orientation $\theta $ by stochastic motion in a double-well potential. The potential is predicted from a model in which the sidewall shape produces an orientation-dependent pressure on the LSC. This model also captures key features of the four flow modes. The experiment reveals an interesting array of rich dynamics of LSC in the horizontal cylinders, which are very different from those observed in the upright cylindrical convection cells. The success of the model for both upright and horizontal cylinders suggests that it can be applied to different geometries.

Copyright

Corresponding author

Email address for correspondence: penger@ust.hk

References

Hide All
Ahlers, G., Funfschilling, D. & Bodenschatz, E. 2009a Transitions in heat transport by turbulent convection at Rayleigh numbers up to $10^{15}$. New J. Phys. 11, 123001.
Ahlers, G., Grossmann, S. & Lohse, D. 2009b Heat transfer and large-scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81 (2), 503537.
Arrhenius, S. 1889 On the reaction rate of the inversion of non-refined sugar upon souring. Z. Phys. Chem. 4, 226248.
Belmonte, A., Tilgner, A. & Libchaber, A. 1993 Boundary layer length scales in thermal turbulence. Phys. Rev. Lett. 70, 40674070.
Brent, A. D., Voller, V. R. & Reid, K. J. 1988 Enthalpy-porosity technique for modelling convection-diffusion phase change application to the melting of a pure metal. Numer. Heat Transfer 13, 297318.
Brown, E. & Ahlers, G. 2006 Rotations and cessations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 568, 351386.
Brown, E. & Ahlers, G. 2007 Large-scale circulation model for turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98 (13), 134501.
Brown, E. & Ahlers, G. 2008a Azimuthal asymmetries of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Fluids 20, 105105.
Brown, E. & Ahlers, G. 2008b A model of diffusion in a potential well for the dynamics of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Fluids 20, 075101.
Brown, E. & Ahlers, G. 2009 The origin of oscillations of the large-scale circulation of turbulent Rayleigh–Bénard convection. J. Fluid Mech. 638, 383400.
Castaing, B., Gunaratne, G., Heslot, F., Libchaber, A., Kadanoff, L., Thomae, S., Wu, X., Zaleski, S. & Zanetti, G. 1989 Scaling of hards thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 130.
Cattaneo, F., Emonet, T. & Weiss, N. 2003 On the interaction between convection and magnetic fields. Astrophys. J. 588, 11831198.
Chavanne, X., Chillà, F., Chabaud, B., Castaing, B. & Hébral, B. 2001 Turbulent Rayleigh–Bénard convection in gaseous and liquid He. Phys. Fluids 13, 1300.
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35, 58.
Cioni, S., Ciliberto, S. & Sommeria, J. 1997 Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number. J. Fluid Mech. 335, 111140.
Daya, Z. A. & Ecke, R. E. 2001 Does turbulent convection feel the shape of the container?. Phys. Rev. Lett. 87 (18), 184501.
Du, Y.-B. & Tong, P. 2000 Turbulent thermal convection in a cell with ordered rough boundaries. J. Fluid Mech. 407, 5784.
Du, Y.-B. & Tong, P. 2001 Temperature fluctuations in a convection cell with rough upper and lower surfaces. Phys. Rev.E 63, 046303.
Dykman, M. I., Mannella, R., McClintock, P. V. E., Moss, F. & Soskin, S. M. 1988 Spectral density fluctuations of a double-well dung oscillator driven by white noise. Phys. Rev. A 37, 1303.
Funfschilling, D. & Ahlers, G. 2004 Plume motion and large-scale circulation in a cylindrical Rayleigh–Bénard cell. Phys. Rev. Lett. 92 (19), 194502.
Funfschilling, D., Brown, E., Nikolaenko, A. & Ahlers, G. 2005 Heat transport by turbulent Rayleigh–Bénard convection in cylindrical samples with aspect ratio one and larger. J. Fluid Mech. 536, 145154.
Gitterman, M. 2005 The Noisy Oscillator, The First Hundred Years, From Einstein Until Now. World Scientific.
Hanggi, P., Talkner, P. & Borkovec, M. 1990 Reaction rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251342.
Hartmann, D. L., Moy, L. A. & Fu, Q. 2001 Tropical convection and the energy balance at the top of the atmosphere. J. Clim. 14, 44954511.
He, X., Funfschilling, D., Nobach, H., Bodenschatz, E. & Ahlers, G. 2012 Transition to the ultimate state of turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 108, 024502.
Hunt, G. R. & Linden, P. F. 1999 The fluid mechanics of natural ventilation displacement ventilation by buoyancy-driven flows assisted by wind. Build. Environ. 34, 707720.
Kadanoff, L. P. 2001 Turbulent heat flow: structures and scaling. Phys. Today 54, 3439.
Kramers, H. A. 1940 Brownian motion in a field of force and the diffusion model of chemical reaction. Physica 7, 284304.
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.
Marshall, J. & Schott, F. 1999 Open-ocean convection: observations, theory, and models. Rev. Geophys. 37, 164.
McKenzie, D. P., Roberts, J. M. & Weiss, N. O. 1974 Convection in the Earths mantle: towards a numerical simulation. J. Fluid Mech. 62, 465538.
Niemela, J. J., Skrbek, L., Sreenivasan, K. R. & Donnelly, R. J. 2000 Turbulent convection at very high Rayleigh numbers. Nature 404, 837840.
Niemela, J. J. & Sreenivasan, K. R. 2003 Rayleigh-number evolution of large-scale coherent motion in turbulent convection. Eur. Phys. Lett. 62, 829.
du Puits, R., Resagk, C. & Thess, A. 2007 Breakdown of wind in turbulent thermal convection. Phys. Rev. E 75, 016302.
du Puits, R., Resagk, C. & Thess, A. 2009 Structure of viscous boundary layers in turbulent Rayleigh–Bénard convection. Phys. Rev. E 63, 046303.
Qiu, X.-L., Shang, X.-D., Tong, P. & Xia, K.-Q. 2004 Velocity oscillations in turbulent Rayleigh–Bénard convection. Phys. Fluids 16, 412423.
Qiu, X.-L. & Tong, P. 2001a Large-scale velocity structures in turbulent thermal convection. Phys. Rev. E 64 (3), 036304.
Qiu, X.-L. & Tong, P. 2001b Onset of coherent oscillations in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 87 (9), 094501.
Qiu, X.-L. & Tong, P. 2002 Temperature oscillations in turbulent Rayleigh–Bénard convection. Phys. Rev. E 66 (2), 026308.
Resagk, C., du Puits, R., Thess, A., Dolzhansky, F. V., Grossmann, S., Araujo, F. F. & Lohse, D. 2006 Oscillations of the large-scale wind in turbulent thermal convection. Phys. Fluids 18, 095105.
Settles, G. S. 2001 Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media. Springer.
Song, H.Effects of geometry on turbulent Rayleigh–Bénard convection. PhD thesis, Hong Kong University of Science and Technology.
Song, H. & Tong, P. 2010 Scaling laws in turbulent Rayleigh–Bénard convection under different geometry. Eur. Phys. Lett. 90, 44001.
Song, H., Villermaux, E. & Tong, P. 2011 Coherent oscillations of turbulent Rayleigh–Bénard convection in a thin vertical disk. Phys. Rev. Lett. 106, 184504.
Sun, C., Cheung, Y. H. & Xia, K. Q. 2008 Experimental studies of the viscous boundary layer properties in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 605, 79113.
Sun, C., Ren, L. Y., Song, H. & Xia, K.-Q. 2005a Heat transport by turbulent Rayleigh–Bénard convection in 1m diameter cylindrical cells of widely varying aspect ratio. J. Fluid Mech. 542, 165174.
Sun, C., Xia, K.-Q. & Tong, P. 2005b Three-dimensional flow structures and dynamics of turbulent thermal convection in a cylindrical cell. Phys. Rev. E 72 (2), 026302.
Sun, C., Zhou, Q. & Xia, K.-Q. 2006 Cascades of velocity and temperature fluctuations in buoyancy-driven thermal turbulence. Phys. Rev. Lett. 97, 144504.
Urban, P., Musilová, V. & Skrbek, L. 2011 Efficiency of heat transfer in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 107, 014302.
Villermaux, E. 1995 Memory-induced low frequency oscillations in closed convection boxes. Phys. Rev. Lett. 75 (25), 46184621.
Xi, H.-D. & Xia, K.-Q. 2007 Cessations and reversals of the large-scale circulation in turbulent thermal convection. Phys. Rev. E 75 (6), 066307.
Xi, H.-D., Zhou, Q. & Xia, K.-Q. 2006 Azimuthal motion of the mean wind in turbulent thermal convection. Phys. Rev. E 73 (5), 056312.
Xi, H.-D., Zhou, S.-Q., Zhou, Q., Chan, T.-S. & Xia, K.-Q. 2009 Origin of the temperature oscillation in turbulent thermal convection. Phys. Rev. Lett. 102 (4), 044503.
Xin, Y. B., Xia, K. Q. & Tong, P. 1996 Measured velocity boundary layers in turbulent convection. Phys. Rev. Lett. 77, 12661269.
Zhou, S. Q., Sun, C. & Xia, K.-Q. 2007 Measured oscillations of the velocity and temperature fields in turbulent Rayleigh–Bénard convection in a rectangular cell. Phys. Rev. E 76, 036301.
Zhou, Q., Xi, H. D., Zhou, S. Q., Sun, C. & Xia, K.-Q. 2009 Oscillations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 630, 367390.
Zocchi, G., Moses, E. & Libchaber, A. 1990 Coherent structures in turbulent convection, an experimental study. Physica A 166, 387407.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Dynamics of large-scale circulation of turbulent thermal convection in a horizontal cylinder

  • Hao Song (a1), Eric Brown (a2), Russell Hawkins (a3) and Penger Tong (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.