## References

Alméras, E., Mathai, V., Lohse, D. & Sun, C.
2017
Experimental investigation of the turbulence induced by a bubble swarm rising within incident turbulence. J. Fluid Mech.
825, 1091–1112.

Bagchi, P. & Balachandar, S.
2004
Response of the wake of an isolated particle to an isotropic turbulent flow. J. Fluid Mech.
518, 95–123.

Batchelor, G. K.
2000
An Introduction to Fluid Dynamics. Cambridge University Press.

Bolster, D., Hershberger, R. E. & Donnelly, R. J.
2010
Oscillating pendulum decay by emission of vortex rings. Phys. Rev. E
81 (4), 046317.

Dong, R. G.1978 Effective mass and damping of submerged structures. *Tech. Rep.* California University, Livermore (USA). Lawrence Livermore Lab.

Govardhan, R. & Williamson, C. H. K.
2000
Modes of vortex formation and frequency response of a freely vibrating cylinder. J. Fluid Mech.
420, 85–130.

Govardhan, R. N. & Williamson, C. H. K.
2005
Vortex-induced vibrations of a sphere. J. Fluid Mech.
531, 11–47.

Hoerner, S. F.
1965
Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance. Hoerner Fluid Dynamics.

Huygens, C.
1986
Christiaan Huygens’ the Pendulum Clock, or, Geometrical Demonstrations Concerning the Motion of Pendula as Applied to Clocks. Iowa State University Press.

Konstantinidis, E.
2013
Added mass of a circular cylinder oscillating in a free stream. Proc. R. Soc. Lond. A
469 (2156), 20130135.

Koo, W. & Kim, J.-D.
2015
Simplified formulas of heave added mass coefficients at high frequency for various two-dimensional bodies in a finite water depth. Intl J. Naval Arch. Ocean Engng
7 (1), 115–127.

Lienhard, J. H.
1966
Synopsis of Lift, Drag, and Vortex Frequency Data for Rigid Circular Cylinders, vol. 300. Technical Extension Service, Washington State University.

Mathai, V., Calzavarini, E., Brons, J., Sun, C. & Lohse, D.
2016
Microbubbles and microparticles are not faithful tracers of turbulent acceleration. Phys. Rev. Lett.
117 (2), 024501.

Mathai, V., Prakash, V. N., Brons, J., Sun, C. & Lohse, D.
2015
Wake-driven dynamics of finite-sized buoyant spheres in turbulence. Phys. Rev. Lett.
115 (12), 124501.

Mathai, V., Zhu, X., Sun, C. & Lohse, D.
2017
Mass and moment of inertia govern the transition in the dynamics and wakes of freely rising and falling cylinders. Phys. Rev. Lett.
119 (5), 054501.

Mathai, V., Zhu, X., Sun, C. & Lohse, D.
2018
Flutter to tumble transition of buoyant spheres triggered by rotational inertia changes. Nat. Commun.
9 (1), 1792.

Mittal, R. & Iaccarino, G.
2005
Immersed boundary methods. Annu. Rev. Fluid Mech.
37, 239–261.

Naso, A. & Prosperetti, A.
2010
The interaction between a solid particle and a turbulent flow. New J. Phys.
12 (3), 033040.

Neill, D., Livelybrooks, D. & Donnelly, R. J.
2007
A pendulum experiment on added mass and the principle of equivalence. Am. J. Phys.
75 (3), 226–229.

Obligado, M., Puy, M. & Bourgoin, M.
2013
Bi-stability of a pendular disk in laminar and turbulent flows. J. Fluid Mech.
728.

Stokes, G. G.
1851
On the Effect of the Internal Friction of Fluids on the Motion of Pendulums. Pitt Press Cambridge.

Tatsuno, M. & Bearman, P. W.
1990
A visual study of the flow around an oscillating circular cylinder at low Keulegan–Carpenter numbers and low Stokes numbers. J. Fluid Mech.
211, 157–182.

Tatsuno, M. & Karasudani, T.
1993
Wavy mode of the streaked flow around an oscillating cylinder in a stratified fluid at rest. Fluid Dyn. Res.
11 (6), 313.

Wu, J.-S. & Faeth, G. M.
1993
Sphere wakes in still surroundings at intermediate Reynolds numbers. AIAA J.
31 (8), 1448–1455.