Skip to main content Accessibility help

Dynamics of falling films on the outside of a vertical rotating cylinder: waves, rivulets and dripping transitions

  • Manuel Rietz (a1), Benoit Scheid (a2), François Gallaire (a3), Nicolas Kofman (a3), Reinhold Kneer (a1) and Wilko Rohlfs (a1)...


Falling liquid films on the underside of a plate or on the outside of a rotating cylinder are subject to a destabilizing body force. The evolution of the film topology is determined by interactions between the Kapitza and the Rayleigh–Taylor instability, leading to complex patterning of the film surface and eventually fluid detachment from the substrate. This study experimentally investigates the evolution of the surface topology for a film on the outside of a vertical rotating cylinder of large radius. Shear at the liquid/air interface is suppressed through an outer, co-rotating cylinder. The film evolution is captured through high speed visualization in dependence of the control parameters, namely Reynolds number and rotation frequency. An increasing influence of the Rayleigh–Taylor instability for an increasing destabilizing body force (increasing rotational speed of the cylinder) is most notably observed in the form of a decreasing inception length of rivulet structures dominating the film topology. Wavelength as well as inception length of rivulets match the predictions from linear stability analysis of the classical Rayleigh–Taylor problem. In this context, experimental and supporting numerical results suggest that the emergence of rivulets occurs for any non-zero value of the destabilizing body force after a given evolution length that decreases with increasing body force. Fluid detachment from the substrate is found to be intimately related to the existence of rivulet structures. In dependence of the control parameters, detaching droplets are either observed as a result of interactions of solitary pulses of varying phase speed on rivulets, directly after destabilization of two-dimensional waves into rivulets or immediately at the fluid inlet. By comparison to the convective/absolute instability transition predicted by linear stability analysis of an integral boundary layer formulation of the problem in question, it is shown that the prediction of a predominant dripping mechanism lies beyond the scope of linear analysis.


Corresponding author

Email address for correspondence:


Hide All
Abdelall, F. F., Abdel-Khalik, S. I., Sadowski, D. L., Shin, S. & Yoda, M. 2006 On the Rayleigh–Taylor instability for confined liquid films with injection through the bounding surfaces. Intl J. Heat Mass Transfer 49, 15291546.
Alekseenko, S. V., Nakoryakov, V. E. & Pokusaev, B. G. 1994 Wave Flow of Liquid Films. Begell House.
Babchin, A. J., Frenkel, A. L., Levich, B. G. & Sivashinsky, G. I. 1983 Nonlinear saturation of Rayleigh–Taylor instability in thin films. Phys. Fluids 26, 3159.
Balestra, G., Brun, P.-T. & Gallaire, F. 2016 Rayleigh–Taylor instability under curved substrates: an optimal transient growth analysis. Phys. Rev. Fluids 1, 083902.
Benjamin, T. B. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2, 554573.
Brauner, N. & Maron, D. M. 1983 Modeling of wavy flow in inclined thin films. Chem. Engng Sci. 38, 775788.
Brun, P.-T., Damiano, A., Rieu, P., Balestra, G. & Gallaire, F. 2015 Rayleigh–Taylor instability under an inclined plane. Phys. Fluids 27, 084107.
Chakraborty, S., Nguyen, P.-K., Ruyer-Quil, C. & Bontozoglou, V. 2014 Extreme solitary waves on falling liquid films. J. Fluid Mech. 745, 564591.
Chang, H.-C. & Demekhin, E. 2002 Complex Wave Dynamics on Thin Films. Elsevier.
Chen, C. I., Chen, C. K. & Yang, Y. T. 2004 Perturbation analysis to the nonlinear stability characterization of thin condensate falling film on the outer surface of a rotating vertical cylinder. Intl J. Heat Mass Transfer 47, 19371951.
Cheng, S. I. & Cordero, J. 1963 Droplet formation from a liquid film over a rotating cylinder. AIAA J. 1, 25972601.
Chinnov, E. A. & Abdurakipov, S. S. 2012 Thermal entry length in a falling liquid film at high Reynolds numbers. High Temp. 50, 400406.
Dávalos-Orozco, L. A. & Ruiz-Chavarría, G. 1993 Hydrodynamic instability of a fluid layer flowing down a rotating cylinder. Phys. Fluids 5, 2390.
Dietze, G. F., Al-Sibai, F. & Kneer, R. 2009 Experimental study of flow separation in laminar falling liquid films. J. Fluid Mech. 637, 73104.
Dietze, G. F., Leefken, A. & Kneer, R. 2008 Investigation of the backflow phenomenon in falling liquid films. J. Fluid Mech. 595, 435459.
Dietze, G. F., Rohlfs, W., Nährich, K. & Scheid, B. 2014 Three-dimensional flow structures in laminar falling liquid films. J. Fluid Mech. 743, 75123.
Duprat, C., Ruyer-Quil, C., Kalliadasis, S. & Giorgiutti-Dauphiné, F. 2007 Absolute and convective instabilities of a viscous film flowing down a vertical fiber. Phys. Rev. Lett. 98, 244502.
Eisenklam, P. 1964 On ligament formation from spinning discs and cups. Chem. Engng J. S 19, 693694.
Fermigier, M., Limat, L., Wesfreid, J. E., Boudinet, P. & Quillet, C. 1992 Two-dimensional patterns in Rayleigh–Taylor instability of a thin layer. J. Fluid Mech. 236, 349383.
Fraser, R. P., Dombrowski, N. & Routley, J. H. 1963 The filfilm of lliquid by spinning cups. Chem. Engng Sci. 18, 323337.
Indeikina, A., Veretennikov, I. & Chang, H.-C. 1997 Drop fall-off from pendent rivulets. J. Fluid Mech. 338, 173201.
Kalliadasis, S., Ruyer-Quil, C., Scheid, B. & Velarde, M. 2012 Falling Liquid Films. Spinger.
Kofman, N., Mergui, S. & Ruyer-Quil, C. 2014 Three-dimensional instabilities of quasi-solitary waves in a falling liquid film. J. Fluid Mech. 757, 854887.
Langley, K. R., Maynes, D. & Truscott, T. T. 2015 Eggs and milk: spinning spheres partially immersed in a liquid bath. Phys. Fluids 27, 032102.
Lel, V. V., Kellermann, A., Dietze, G., Kneer, R. & Pavlenko, A. N. 2008 Investigations of the marangoni effect on the regular structures in heated wavy liquid films. Exp. Fluids 44, 341354.
Lin, T.-S., Kondic, L. & Filippov, A. 2012 Thin films flowing down inverted substrates: three-dimensional flow. Phys. Fluids 24, 022105.
Malamataris, N. A. & Balakotaiah, V. 2008 Flow structure underneath the large amplitude waves of a vertically falling film. AIC 54, 17251740.
Rietz, M., Rohlfs, W., Kneer, R. & Scheid, B. 2015 Experimental investigation of thermal structures in regular three-dimensional falling films. Phys. J. Special Topics 224, 355368.
Rohlfs, W.2015 Wave characteristics of falling liquid films under the influence of positive and negative inclination or electrostatic forces. PhD thesis, RWTH Aachen University.
Rohlfs, W., Pischke, P. & Scheid, B. 2017 Hydrodynamic waves in films flowing under an inclined plane. Phys. Rev. Fluids 2, 044003.
Rohlfs, W. & Scheid, B. 2015 Phase diagram for the onset of circulating waves and flow reversal in inclined falling films. J. Fluid Mech. 763, 322351.
Ruyer-Quil, C. & Manneville, P. 2000 Improved modeling of flows down inclined planes. Eur. Phys. J. B 15, 357369.
Ruyer-Quil, C. & Manneville, P. 2002 Further accuracy and convergence results on the modeling of flows down inclined planes by weighted-residual approximations. Phys. Fluids 14, 170183.
Scheid, B., Kalliadasis, S., Ruyer-Quil, C. & Colinet, P. 2008a Interaction of three-dimensional hydrodynamic and thermocapillary instabilities in film flows. Phys. Rev. E 78, 066311.
Scheid, B., Kalliadasis, S., Ruyer-Quil, C. & Colinet, P. 2008b Spontaneous channeling of solitary pulses in heated-film flows. Eur. Phys. Lett. 84, 64002.
Scheid, B., Kofman, N. & Rohlfs, W. 2016 Critical inclination for absolute/convective instability transition in inverted falling films. Phys. Fluids 28, 044107.
Scheid, B., Ruyer-Quil, C. & Manneville, P. 2006 Wave patterns in film flows: modelling and three-dimensional waves. J. Fluid Mech. 562, 183222.
Sharp, D. H. 1984 An overview of Rayleigh–Taylor instability. Physica D 12, 318.
Taylor, G. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. R. Soc. Lond. A 201, 192196.
Trinh, P. H., Kim, K., Hammoud, N., Howell, P. D., Chapman, S. J. & Stone, H. A. 2014 Curvature suppresses the Rayleigh–Taylor instability. Phys. Fluids 26, 051704.
Vlachogiannis, M., Samandas, A., Leontidis, V. & Bontozoglou, V. 2010 Effect of channel width on the primary instability of inclined film flow. Phys. Fluids 22, 012106.
Yih, C.-S. 1963 Stability of liquid flow down an inclined plane. Phys. Fluids 6, 321334.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Dynamics of falling films on the outside of a vertical rotating cylinder: waves, rivulets and dripping transitions

  • Manuel Rietz (a1), Benoit Scheid (a2), François Gallaire (a3), Nicolas Kofman (a3), Reinhold Kneer (a1) and Wilko Rohlfs (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed