Skip to main content Accessibility help
×
Home

Dynamics of capsules enclosing viscoelastic fluid in simple shear flow

  • Zheng Yuan Luo (a1) and Bo Feng Bai (a1)

Abstract

Previous studies on capsule dynamics in shear flow have dealt with Newtonian fluids, while the effect of fluid viscoelasticity remains an unresolved fundamental question. In this paper, we report a numerical investigation of the dynamics of capsules enclosing a viscoelastic fluid and which are freely suspended in a Newtonian fluid under simple shear. Systematic simulations are performed at small but non-zero Reynolds numbers (i.e. $Re=0.1$ ) using a three-dimensional front-tracking finite-difference model, in which the fluid viscoelasticity is introduced via the Oldroyd-B constitutive equation. We demonstrate that the internal fluid viscoelasticity presents significant effects on the deformation behaviour of initially spherical capsules, including transient evolution and equilibrium values of their deformation and orientation. Particularly, the capsule deformation decreases slightly with the Deborah number De increasing from 0 to $O(1)$ . In contrast, with De increasing within high levels, i.e. $O(1{-}100)$ , the capsule deformation increases continuously and eventually approaches the Newtonian limit having a viscosity the same as the Newtonian part of the viscoelastic capsule. By analysing the viscous stress, pressure and viscoelastic stress acting on the capsule membrane, we reveal that the mechanism underlying the effects of the internal fluid viscoelasticity on the capsule deformation is the alterations in the distribution of the viscoelastic stress at low De and its magnitude at high De, respectively. Furthermore, we find some new features in the dynamics of initially non-spherical capsules induced by the internal fluid viscoelasticity. Particularly, the transition from tumbling to swinging of oblate capsules can be triggered at very high viscosity ratios by increasing De alone. Besides, the critical viscosity ratio for the tumbling-to-swinging transition is remarkably enlarged with De increasing at relatively high levels, i.e. $O(1{-}100)$ , while it shows little change at low De, i.e. below $O(1)$ .

Copyright

Corresponding author

Email address for correspondence: bfbai@mail.xjtu.edu.cn

References

Hide All
Aggarwal, N. & Sarkar, K. 2007 Deformation and breakup of a viscoelastic drop in a newtonian matrix under steady shear. J. Fluid Mech. 584, 121.
Bagchi, P. & Kalluri, R. M. 2009 Dynamics of nonspherical capsules in shear flow. Phys. Rev. E 80, 016307.
Bai, B. F., Luo, Z. Y., Wang, S. Q., He, L., Lu, T. J. & Xu, F. 2013 Inertia effect on deformation of viscoelastic capsules in microscale flows. Microfluid. Nanofluid. 14, 817829.
Barthes-Biesel, D. 1980 Motion of a spherical microcapsule freely suspended in a linear shear flow. J. Fluid Mech. 100, 831853.
Barthes-Biesel, D. 2009 Capsule motion in flow: deformation and membrane buckling. C. R. Phys. 10, 764774.
Barthes-Biesel, D. 2011 Modeling the motion of capsules in flow. Curr. Opin. Colloid Interface Sci. 16, 312.
Barthes-Biesel, D. 2016 Motion and deformation of elastic capsules and vesicles in flow. Annu. Rev. Fluid Mech. 48, 2552.
Barthes-Biesel, D., Diaz, A. & Dhenin, E. 2002 Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation. J. Fluid Mech. 460, 211222.
Barthes-Biesel, D. & Rallison, J. M. 1981 The time-dependent deformation of a capsule freely sespended in a linear shear flow. J. Fluid Mech. 113, 251267.
Chang, K.-C., Tees, D. F. & Hammer, D. A. 2000 The state diagram for cell adhesion under flow: Leukocyte rolling and firm adhesion. Proc. Natl Acad. Sci. USA 97, 1126211267.
Chinyoka, T., Renardy, Y., Renardy, M. & Khismatullin, D. 2005 Two-dimensional study of drop deformation under simple shear for oldroyd-b liquids. J. Non-Newtonian Fluid Mech. 130, 4556.
Cordasco, D. & Bagchi, P. 2013 Orbital drift of capsules and red blood cells in shear flow. Phys. Fluids 25, 091902.
de Loubens, C., Deschamps, J., Edwards-Levy, F. & Leonetti, M. 2016 Tank-treading of microcapsules in shear flow. J. Fluid Mech. 789, 750767.
Dodson, W. R. & Dimitrakopoulos, P. 2009 Dynamics of strain-hardening and strain-softening capsules in strong planar extensional flows via an interfacial spectral boundary element algorithm for elastic membranes. J. Fluid Mech. 641, 263296.
Dong, C. & Skalak, R. 1992 Leukocyte deformability: finite element modeling of large viscoelastic deformation. J. Theor. Biol. 158, 173193.
Dong, C., Skalak, R., Sung, K.-L. P., Schmid-Schonbein, G. & Chien, S. 1988 Passive deformation analysis of human leukocytes. Trans. ASME J. Biomech. Engng 110, 2736.
Dupont, C., Delahaye, F., Barthes-Biesel, D. & Salsac, A. V. 2016 Stable equilibrium configurations of an oblate capsule in simple shear flow. J. Fluid Mech. 791, 738757.
Dupont, C., Salsac, A. V. & Barthes-Biesel, D. 2013 Off-plane motion of a prolate capsule in shear flow. J. Fluid Mech. 721, 180198.
Dupont, C., Salsac, A. V., Barthes-Biesel, D., Vidrascu, M. & Le Tallec, P. 2015 Influence of bending resistance on the dynamics of a spherical capsule in shear flow. Phys. Fluids 27, 051902.
Fattal, R. & Kupferman, R. 2005 Time-dependent simulation of viscoelastic flows at high weissenberg number using the log-conformation representation. J. Non-Newtonian Fluid Mech. 126, 2337.
Finken, R., Kessler, S. & Seifert, U. 2011 Micro-capsules in shear flow. J. Phys. Condens. Matter 23, 184113.
Foessel, E., Walter, J., Salsac, A. V. & Barthes-Biesel, D. 2011 Influence of internal viscosity on the large deformation and buckling of a spherical capsule in a simple shear flow. J. Fluid Mech. 672, 477486.
Forsyth, A. M., Wan, J., Owrutsky, P. D., Abkarian, M. & Stone, H. A. 2011 Multiscale approach to link red blood cell dynamics, shear viscosity, and atp release. Proc. Natl Acad. Sci. USA 108, 1098610991.
Freund, J. B. 2014 Numerical simulation of flowing blood cells. Annu. Rev. Fluid Mech. 46, 6795.
Guido, S. 2011 Shear-induced droplet deformation: effects of confined geometry and viscoelasticity. Curr. Opin. Colloid Interface Sci. 16, 6170.
Hammer, D. A. 2014 Adhesive dynamics. Trans. ASME J. Biomech. Engng 136, 021006.
Helfrich, W. 1973 Elastic propeties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C 28, 693703.
Huang, H., Yu, Y., Hu, Y., He, X., Usta, O. B. & Yarmush, M. L. 2017 Generation and manipulation of hydrogel microcapsules by droplet-based microfluidics for mammalian cell culture. Lab on a Chip 17, 19131932.
Izbassarov, D. & Muradoglu, M. 2015 A front-tracking method for computational modeling of viscoelastic two-phase flow systems. J. Non-Newtonian Fluid Mech. 223, 122140.
Izbassarov, D. & Muradoglu, M. 2016 A computational study of two-phase viscoelastic systems in a capillary tube with a sudden contraction/expansion. Phys. Fluids 28, 012110.
James, D. F. 2009 Boger fluids. Annu. Rev. Fluid Mech. 41, 129142.
Keller, S. R. & Skalak, R. 1982 Motion of a tank-treading ellipsoidal particle in a shear flow. J. Fluid Mech. 120, 2747.
Kessler, S., Finken, R. & Seifert, U. 2008 Swinging and tumbling of elastic capsules in shear flow. J. Fluid Mech. 605, 207226.
Khismatullin, D. B. & Truskey, G. A. 2012 Leukocyte rolling on p-selectin: a three-dimensional numerical study of the effect of cytoplasmic viscosity. Biophys. J. 102, 17571766.
Koleva, I. & Rehage, H. 2012 Deformation and orientation dynamics of polysiloxane microcapsules in linear shear flow. Soft Matt. 8, 36813693.
Koumoutsakos, P., Pivkin, I. & Milde, F. 2013 The fluid mechanics of cancer and its therapy. Annu. Rev. Fluid Mech. 45, 325355.
Kwak, S. & Pozrikidis, C. 2001 Effect of membrane bending stiffness on the axisymmetric deformation of capsules in uniaxial extensional flow. Phys. Fluids 13, 12341242.
Lac, E. & Barthes-Biesel, D. 2005 Deformation of a capsule in simple shear flow: effect of membrane prestress. Phys. Fluids 17, 072105.
Lac, E., Barthes-Biesel, D., Pelekasis, N. A. & Tsamopoulos, J. 2004 Spherical capsules in three-dimensional unbounded stokes flows: effect of the membrane constitutive law and onset of buckling. J. Fluid Mech. 516, 303334.
Le, D. V. 2010 Effect of bending stiffness on the deformation of liquid capsules enclosed by thin shells in shear flow. Phys. Rev. E 82, 016318.
Li, X. Y. & Sarkar, K. 2008 Front tracking simulation of deformation and buckling instability of a liquid capsule enclosed by an elastic membrane. J. Comput. Phys. 227, 49985018.
Luo, Z. Y. & Bai, B. F. 2016 Dynamics of nonspherical compound capsules in simple shear flow. Phys. Fluids 28, 101901.
Luo, Z. Y., He, L. & Bai, B. F. 2015 Deformation of spherical compound capsules in simple shear flow. J. Fluid Mech. 775, 77104.
Luo, Z. Y., He, L., Wang, S. Q., Tasoglu, S., Xu, F., Demirci, U. & Bai, B. F. 2014 Two-dimensional numerical study of flow dynamics of a nucleated cell tethered under shear flow. Chem. Engng Sci. 119, 236244.
Luo, Z. Y., Wang, S. Q., He, L., Xu, F. & Bai, B. F. 2013 Inertia-dependent dynamics of three-dimensional vesicles and red blood cells in shear flow. Soft Matt. 9, 96519660.
Matsunaga, D., Imai, Y., Yamaguchi, T. & Ishikawa, T. 2015 Deformation of a spherical capsule under oscillating shear flow. J. Fluid Mech. 762, 288301.
Mukherjee, S. & Sarkar, K. 2009 Effects of viscosity ratio on deformation of a viscoelastic drop in a newtonian matrix under steady shear. J. Non-Newtonian Fluid Mech. 160, 104112.
Ni, M. J., Komori, S. & Morley, N. 2003 Projection methods for the calculation of incompressible unsteady flows. Numer. Heat Transfer B-Fund. 44, 533551.
Noble, P. F., Cayre, O. J., Alargova, R. G., Velev, O. D. & Paunov, V. N. 2004 Fabrication of ‘hairy’ colloidosomes with shells of polymeric microrods. J. Am. Chem. Soc. 126, 80928093.
Omori, T., Imai, Y., Yamaguchi, T. & Ishikawa, T. 2012 Reorientation of a nonspherical capsule in creeping shear flow. Phys. Rev. Lett. 108, 138102.
Popel, A. S. & Johnson, P. C. 2005 Microcirculation and hemorheology. Annu. Rev. Fluid Mech. 37, 4369.
Pozrikidis, C. 2001 Effect of membrane bending stiffness on the deformation of capsules in simple shear flow. J. Fluid Mech. 440, 269291.
Raffiee, A. H., Dabiri, S. & Ardekani, A. M. 2017 Deformation and buckling of microcapsules in a viscoelastic matrix. Phys. Rev. E 96, 032603.
Ramanujan, S. & Pozrikidis, C. 1998 Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities. J. Fluid Mech. 361, 117143.
Ramaswamy, S. & Leal, L. 1999 The deformation of a viscoelastic drop subjected to steady uniaxial extensional flow of a newtonian fluid. J. Non-Newtonian Fluid Mech. 85, 127163.
Rożkiewicz, D. I., Myers, B. D. & Stupp, S. I. 2011 Interfacial self-assembly of cell-like filamentous microcapsules. Angew. Chem. Intl Ed. Engl. 50, 63246327.
Shrivastava, S. & Tang, J. 1993 Large deformation finite element analysis of non-linear viscoelastic membranes with reference to thermoforming. J. Strain Anal. Eng. 28, 3151.
Skalak, R., Tozeren, A., Zarda, R. P. & Chien, S. 1973 Strain energy function of red blood cell membranes. Biophys. J. 13, 245280.
Sui, Y., Chew, Y. T., Roy, P. & Low, H. T. 2009 Inertia effect on the transient deformation of elastic capsules in simple shear flow. Comput. Fluids 38, 4959.
Taylor, G. I. 1934 The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A 146, 05010523.
Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S. & Jan, Y. J. 2001 A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169, 708759.
Tsai, M. A., Frank, R. S. & Waugh, R. E. 1993 Passive mechanical behavior of human neutrophils: power-law fluid. Biophys. J. 65, 20782088.
Unverdi, S. O. & Tryggvason, G. 1992 A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100, 2537.
Verhulst, K., Cardinaels, R., Moldenaers, P., Afkhami, S. & Renardy, Y. 2009a Influence of viscoelasticity on drop deformation and orientation in shear flow. Part 2: dynamics. J. Non-Newtonian Fluid Mech. 156, 4457.
Verhulst, K., Cardinaels, R., Moldenaers, P., Renardy, Y. & Afkhami, S. 2009b Influence of viscoelasticity on drop deformation and orientation in shear flow: part 1. Stationary states. J. Non-Newtonian Fluid Mech. 156, 2943.
Villone, M. M., D’Avino, G., Hulsen, M. A. & Maffettone, P. L. 2015 Dynamics of prolate spheroidal elastic particles in confined shear flow. Phys. Rev. E 92, 062303.
Vlahovska, P. M., Young, Y. N., Danker, G. & Misbah, C. 2011 Dynamics of a non-spherical microcapsule with incompressible interface in shear flow. J. Fluid Mech. 678, 221247.
Walter, J., Salsac, A. V. & Barthes-Biesel, D. 2011 Ellipsoidal capsules in simple shear flow: prolate versus oblate initial shapes. J. Fluid Mech. 676, 318347.
Wang, Z., Sui, Y., Spelt, P. D. M. & Wang, W. 2013 Three-dimensional dynamics of oblate and prolate capsules in shear flow. Phys. Rev. E 88, 053021.
Yazdani, A. & Bagchi, P. 2011 Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow. Phys. Rev. E 84, 026314.
Yazdani, A. & Bagchi, P. 2012 Three-dimensional numerical simulation of vesicle dynamics using a front-tracking method. Phys. Rev. E 85, 056308.
Yazdani, A. & Bagchi, P. 2013 Influence of membrane viscosity on capsule dynamics in shear flow. J. Fluid Mech. 718, 569595.
Yue, P., Feng, J. J., Liu, C. & Shen, J. 2005a Transient drop deformation upon startup of shear in viscoelastic fluids. Phys. Fluids 17, 123101.
Yue, P., Feng, J. J., Liu, C. & Shen, J. 2005b Viscoelastic effects on drop deformation in steady shear. J. Fluid Mech. 540, 427437.
Zang, Y., Street, R. L. & Koseff, J. R. 1994 A non-staggered grid, fractional step method for time-dependent incompressible Navier–Stokes equations in curvilinear coordinates. J. Comput. Phys. 114, 1833.
Zhang, Y., Yu, J., Bomba, H. N., Zhu, Y. & Gu, Z. 2016 Mechanical force-triggered drug delivery. Chem. Rev. 116, 1253612563.
Zhao, M. Y. & Bagchi, P. 2011 Dynamics of microcapsules in oscillating shear flow. Phys. Fluids 23, 111901.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Dynamics of capsules enclosing viscoelastic fluid in simple shear flow

  • Zheng Yuan Luo (a1) and Bo Feng Bai (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed