Skip to main content Accessibility help

Dynamics of bead formation, filament thinning and breakup in weakly viscoelastic jets

  • A. M. ARDEKANI (a1), V. SHARMA (a1) and G. H. McKINLEY (a1)


The spatiotemporal evolution of a viscoelastic jet depends on the relative magnitude of capillary, viscous, inertial and elastic stresses. The interplay of capillary and elastic stresses leads to the formation of very thin and stable filaments between drops, or to ‘beads-on-a-string’ structure. In this paper, we show that by understanding the physical processes that control different stages of the jet evolution it is possible to extract transient extensional viscosity information even for very low viscosity and weakly elastic liquids, which is a particular challenge in using traditional rheometers. The parameter space at which a forced jet can be used as an extensional rheometer is numerically investigated by using a one-dimensional nonlinear free-surface theory for Oldroyd-B and Giesekus fluids. The results show that even when the ratio of viscous to inertio-capillary time scales (or Ohnesorge number) is as low as Oh ~ 0.02, the temporal evolution of the jet can be used to obtain elongational properties of the liquid.


Corresponding author

Email address for correspondence:


Hide All
Anna, S. L., McKinley, G. H., Nguyen, D. A., Sridhar, T., Muller, S. J., Huang, J. & James, D. F. 2001 An interlaboratory comparison of measurements from filament-stretching rheometers using common test fluids. J. Rheol. 45, 83114.
Ardekani, A. M., Sharma, V. & McKinley, G. H. 2010 Jetting and breakup of weakly viscoelastic liquids. In 16th US National Congress of Theoretical and Applied Mechanics (USNCTAM2010-912), 17 June–2 July 2010, State College, Pennsylvania.
Basaran, O. A. 1992 Nonlinear oscillation of viscous liquid drops. J. Fluid Mech. 241, 169198.
Bauer, H. F. & Eidel, W. 1987 Vibration of a visco-elastic spherical immiscible liquid system. Z. Angew. Math. Mech. 67, 525535.
Bhat, P. P., Appathurai, S., Harris, M. T., Pasquali, M., McKinley, G. H. & Basaran, O. A. 2010 Formation of beads-on-a-string structures during breakup of viscoelastic filaments. Nature Phys. 6 (8), 625631.
Bird, R. B., Armstrong, R. C. & Hassager, O. 1987 Dynamics of Polymeric Liquids. Wiley.
Bousfield, D. W., Keunings, R., Marrucci, G. & Denn, M. M. 1986 Nonlinear analysis of the surface-tension driven breakup of viscoelastic filaments. J. Non-Newtonian Fluid Mech. 21 (1), 7997.
Brenn, G., Liu, Z. & Durst, F. 2000 Linear analysis of the temporal instability of axisymmetrical non-Newtonian liquid jets. Intl J. Multiphase Flow 26, 16211644.
Clasen, C., Eggers, J., Fontelos, M. A., Li, J. & McKinley, G. H. 2006 The beads-on-string structure of viscoelastic threads. J. Fluid Mech. 556, 283308.
Eggers, J. 1997 Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865929.
Entov, V. M. & Hinch, E. J. 1997 Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid. J. Non-Newtonian Fluid Mech. 72 (1), 3153.
Entov, V. M. & Yarin, A. L. 1984 Influence of elastic stresses on the capillary breakup of dilute polymer solutions. Fluid Dyn. 19, 2129.
Fontelos, M. A. & Li, J. 2004 On the evolution and rupture of filaments in Giesekus and FENE models. J. Non-Newtonian Fluid Mech. 118 (1), 116.
Forest, M. G. & Wang, Q. 1990 Change-of-type behavior in viscoelastic slender jet models. J. Theor. Comput. Fluid Dyn. 2, 125.
Giesekus, H. 1982 A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J. Non-Newtonian Fluid Mech. 11 (1–2), 69109.
Goldin, M., Yerushalmi, J., Pfeffer, R. & Shinnar, R. 1969 Breakup of a laminar capillary jet of a viscoelastic fluid. J. Fluid Mech. 38, 689711.
Hoath, S. D., Hutchings, I. M., Martin, G. D., Tuladhar, T. R., Mackley, M. R. & Vadillo, D. 2009 Links between ink rheology, drop-on-demand jet formation, and printability. J. Imaging Sci. Technol. 53, 041208.
Khismatullin, D. B. & Nadim, A. 2001 Shape oscillations of a viscoelastic drop. Phys. Rev. E 63 (6, part 1), 061508.
Lamb, H. 1932 Hydrodynamics. Dover.
Li, J. & Fontelos, M. A. 2003 Drop dynamics on the beads-on-string structure for viscoelastic jets: a numerical study. Phys. Fluids 15 (4), 922937.
Middleman, S. 1965 Stability of a viscoelastic jet. Chem. Engng Sci. 20, 10371040.
Morrison, N. F. & Harlen, O. G. 2010 Viscoelasticity in inkjet printing. Rheol. Acta 49, 619632.
Rayleigh, L. 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond. 29, 7197.
Rodd, L. E., Scott, T. P., Cooper-White, J. & McKinley, G. H. 2005 Capillary break-up rheometry of low-viscosity elastic fluids. Appl. Rheol. 15, 1227.
Schümmer, P. & Tebel, K. H. 1983 A new elongational rheometer for polymer solutions. J. Non-Newtonian Fluid Mech. 12, 331347.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Dynamics of bead formation, filament thinning and breakup in weakly viscoelastic jets

  • A. M. ARDEKANI (a1), V. SHARMA (a1) and G. H. McKINLEY (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.