Skip to main content Accessibility help

The dynamics of an insulating plate over a thermally convecting fluid and its implication for continent movement over convective mantle

  • Yadan Mao (a1), Jin-Qiang Zhong (a2) and Jun Zhang (a3) (a4)


Continents exert a thermal blanket effect to the mantle underneath by locally accumulating heat and modifying the flow structures, which in turn affects continent motion. This dynamic feedback is studied numerically with a simplified model of an insulating plate over a thermally convecting fluid with infinite Prandtl number at Rayleigh numbers of the order of $10^{6}$ . Several plate–fluid coupling modes are revealed as the plate size varies. In particular, small plates show long durations of stagnancy over cold downwellings. Between long stagnancies, bursts of velocity are observed when the plate rides on a single convection cell. As plate size increases, the coupled system transitions to another type of short-lived stagnancy, in which case hot plumes develop underneath. For an even larger plate, a unidirectional moving mode emerges as the plate modifies impeding flow structures it encounters while maintaining a single convection cell underneath. These identified modes are reminiscent of some real cases of continent–mantle coupling. Results show that the capability of a plate to overcome impeding flow structures increases with plate size, Rayleigh number and intensity of internal heating. Compared to cases with a fixed plate, cases with a freely drifting plate are associated with higher Nusselt number and more convection cells within the flow domain.


Corresponding author

Email address for correspondence:


Hide All
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.
Bunge, H.-P. & Richards, M. A. 1996 The origin of large scale structure in mantle convection: effects of plate motions and viscosity stratification. Geophys. Res. Lett. 23, 29872990.
Bunge, H.-P., Richards, M. A. & Baumgardner, J.-R. 1996 Effect of depth-dependent viscosity on the planform of mantle convection. Nature 379, 436438.10.1038/379436a0
Bunge, H.-P., Richards, M. A. & Baumgardner, J. R. 1997 A sensitivity study of three-dimensional spherical mantle convection at 108 Rayleigh number: effects of depth-dependent viscosity, heating mode, and an endothermic phase change. J. Geophys. Res. 102, 1199112007.
Burke, K. & Torsvik, T. H. 2004 Derivation of large igneous provinces of the past 200 million years from long-term heterogeneities in the deep mantle. Earth Planet. Sci. Lett. 227, 531538.10.1016/j.epsl.2004.09.015
Cande, S. C. & Stock, J. M. 2004 Pacific–Antarctic–Australia motion and the formation of the Macquarie plate. Geophys. J. Intl 157, 399414.10.1111/j.1365-246X.2004.02224.x
Davies, G. F. 1988 Role of the lithosphere in mantle convection. J. Geophys. Res. 93, 1045110466.10.1029/JB093iB09p10451
Ebinger, C. J. & Sleep, N. H. 1998 Cenozoic magmatism throughout east Africa resulting from impact of a single plume. Nature 395, 788791.10.1038/27417
Elder, J. 1967 Convective self-propulsion of continents. Nature 214, 657750.10.1038/214657a0
Gable, C. W., O’Connell, R. J. & Travis, B. J. 1991 Convection in three dimensions with surface plates: generation of toroidal flow. J. Geophys. Res 96, 83918405.
Grigné, C., Labrosse, S. & Tackley, P. J. 2005 Convective heat transfer as a function of wavelength: implications for the cooling of the Earth. J. Geophys. Res. 110, B03409.
Grigné, C., Labrosse, S. & Tackley, P. J. 2007 Convection under a lid of finite conductivity in wide aspect ratio models: effect of continents on the wavelength of mantle flow. J. Geophys. Res. 112, B08403.
Gurnis, M. 1988 Large-scale mantle convection and aggregation and dispersal of supercontinents. Nature 313, 541546.
Heron, P. & Lowman, J. P. 2011 The effects of supercontinent size and thermal insulation on the formation of mantle plumes. Tectonophysics 510, 2838.10.1016/j.tecto.2011.07.002
Höink, T. & Lenardic, A. 2008 Three-dimensional mantle convection simulations with a low-viscosity asthenosphere and the relationship between heat flow and the horizontal length scale of convection. Geophys. Res. Lett. 35, L10304.
Honda, S., Yoshida, M., Ootorii, S. & Iwase, Y. 2000 The timescales of plume generation caused by continental aggregation. Earth Planet. Sci. Lett. 176, 3143.
Howard, L. N., Malkus, W. V. R. & Whitehead, J. A. 1970 Self-convection of floating heat sources: a model for continental drift. Geophys. Fluid Dyn. 1, 123142.
Jarvis, G. T. & Peltier, W. R. 1989 Convection models and geophysical observations. In Mantle Convection: Plate Tectonics and Global Dynamics (ed. Peltier, W. R.), pp. 479594. Gordon and Breach.
King, S. D. 1995 The viscosity structure of the mantle. Rev. Geophys. 33, 1117.
Lenardic, A., Moresi, L., Jellinek, A. M. & Manga, M. 2005 Continental insulation, mantle cooling, and the surface area of oceans and continents. Earth Planet. Sci. Lett. 234, 317333.10.1016/j.epsl.2005.01.038
Lenardic, A., Richards, M. A. & Busse, F. H. 2006 Depth-dependent rheology and the horizontal length scale of mantle convection. J. Geophys. Res. 111, B07404.10.1029/2005JB003639
Leonard, B. P. 1979 A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Meth. Appl. Mech. Engng 19, 5998.10.1016/0045-7825(79)90034-3
Lithgow-Bertelloni, C. & Silver, P. G. 1998 Dynamic topography, plate driving forces and the African superswell. Nature 395, 269272.10.1038/26212
Lowman, J. P. & Gable, C. W. 1999 Thermal evolution of the mantle following continental aggregation in 3D convection models. Geophys. Res. Lett. 26, 26492652.
Lowman, J. P. & Jarvis, G. T. 1993 Mantle convection flow reversals due to continental collisions. Geophys. Res. Lett. 20, 20872090.10.1029/93GL02047
Lowman, J. P. & Jarvis, G. T. 1995 Mantle convection models of continental collision and breakup incorporating finite thickness plates. Phys. Earth Planet. Inter. 88, 5368.10.1016/0031-9201(94)05076-A
Lowman, J. P. & Jarvis, G. T. 1999 Effects of mantle heat source distribution on supercontinent stability. J. Geophys. Res. 104, B6, 12733–12746.
Lowman, J., King, S. D. & Gable, C. W. 2001 The influence of tectonic plates on mantle convection patterns, temperature and heat flow. Geophys. J. Intl 146, 619636.
Mao, Y., Lei, C. & Patterson, J. C. 2009 Unsteady natural convection in a triangular enclosure induced by absorption of radiation – a revisit by improved scaling analysis. J. Fluid Mech. 622, 75102.
Mao, Y., Lei, C. & Patterson, J. C. 2010 Unsteady near-shore natural convection induced by surface cooling. J. Fluid Mech. 642, 213233.
Mitrovica, J. X. 1996 Haskell [1935] revisited. J. Geophys. Res. 101, 555569.10.1029/95JB03208
Monnereau, M. & Quéré, S. 2001 Spherical shell models of mantle convection with tectonic plates. Earth Planet. Sci. Lett. 184, 575587.
Patankar, S. V. 1980 Numerical Heat Transfer and Fluid Flow. Taylor & Francis.
Phillips, B. R. & Bunge, H.-P. 2005 Heterogeneity and time dependence in 3D spherical mantle convection models with continental drift. Earth Planet. Sci. Lett. 233, 121135.
Pollack, H. N., Hurter, S. J. & Johnson, J. R. 1993 Heat flow from the Earth’s interior: analysis of the global data set. Rev. Geophys. 31, 267280.
Ritsema, J., van Heijst, H. J. & Woodhouse, J. H. 1999 Complex shear wave velocity structure imaged beneath Africa and Iceland. Science 286, 19251928.10.1126/science.286.5446.1925
Schubert, G., Turcotte, D. L. & Olson, P. 2001 Mantle Convection in the Earth and Planets. Cambridge University Press, 940 pp.
Suggate, R. P., Stevens, G. R. & Te Punga, M. T. 1978 The Geology of New Zealand. Department of Scientific and Industrial Research.
Sutherland, R. 1999 Basement geology and tectonic development of the greater New Zealand region: an interpretation from regional magnetic data. Tectonophysics 308, 341362.10.1016/S0040-1951(99)00108-0
Tackley, P. J. 1996 On the ability of phase transitions and viscosity layering to induce long wavelength heterogeneity in the mantle. Geophys. Res. Lett. 23, 19851988.
Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J. & Ashwal, L. D. 2010 Diamonds sampled by plumes from the core–mantle boundary. Nature 466, 352355.
Torsvik, T. H., Steinberger, B., Cocks, L. R. M. & Burke, K. 2008 Longitude: linking Earth’s ancient surface to its deep interior. Earth Planet. Sci. Lett. 276, 273282.10.1016/j.epsl.2008.09.026
Turcotte, D. & Schubert, G. 2002 Geodynamics, 2nd edn. Cambridge University Press.
Whitehead, J. A. 1972 Moving heaters as a model of continental drift. Phys. Earth Planet. Inter. 5, 199212.10.1016/0031-9201(72)90092-1
Whitehead, J. A. & Behn, M. D. 2015 The continental drift convection cell. Geophys. Res. Lett. 42, 43014308.
Whitehead, J. A., Shea, E. & Behn, M. D. 2011 Cellular convection in a chamber with a warm surface raft. Phys. Fluids 23, 104103.
Zhang, J. & Libchaber, A. 2000 Periodic boundary motion in thermal turbulence. Phys. Rev. Lett. 84, 43614364.10.1103/PhysRevLett.84.4361
Zhong, J.-Q. & Zhang, J. 2005 Thermal convection with a freely moving top boundary. Phys. Fluids 17, 115105.
Zhong, J.-Q. & Zhang, J. 2007a Dynamical states of a mobile heat blanket on a thermally convecting fluid. Phys. Rev. E 75, 055301.
Zhong, J.-Q. & Zhang, J. 2007b Modeling the dynamics of a free boundary on turbulent thermal convection. Phys. Rev. E 76, 016307.
Zhong, S. & Gurnis, M. 1993 Dynamic feedback between a Continent like raft and thermal convection. J. Geophys. Res. 98, 1221912232.10.1029/93JB00193
Zhong, S., Zuber, M. T., Moresi, L. & Gurnis, M. 2000 Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. J. Geophys. Res. 105, 1106311082.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Type Description Title

Mao et al. supplementary movie 1
The evolution of Stagnant Mode I (SM I) for L = 0.5

 Video (29.2 MB)
29.2 MB

Mao et al. supplementary movie 2
The evolution of stagnant mode II (SMI) for L = 1.5

 Video (22.7 MB)
22.7 MB

Mao et al. supplementary movie 3
The unidirectional moving mode (UMM) for L = 2.5

 Video (19.6 MB)
19.6 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed