Skip to main content Accessibility help
×
Home

Dynamics of an elastic sphere containing a thin creeping region and immersed in an acoustic region for similar viscous-elastic and acoustic time and length scales

  • Yonatan Friedman (a1) and Amir D. Gat (a1)

Abstract

The characteristic time of low-Reynolds-number fluid–structure interaction scales linearly with the ratio of fluid viscosity to solid Young’s modulus. For sufficiently large values of Young’s modulus, both time and length scales of the viscous-elastic dynamics may be similar to acoustic time and length scales. However, the requirement of dominant viscous effects limits the validity of such regimes to micro-configurations. We here study the dynamics of an acoustic plane wave impinging on the surface of a layered sphere, immersed within an inviscid fluid, and composed of an inner elastic sphere, a creeping fluid layer and an external elastic shell. We focus on configurations with similar viscous-elastic and acoustic time and length scales, where the viscous-elastic speed of interaction between the creeping layer and the elastic regions is similar to the speed of sound. By expanding the linearized spherical Reynolds equation into the relevant spectral series solution for the hyperbolic elastic regions, a global stiffness matrix of the layered elastic sphere was obtained. The maximal pressure difference induced by the acoustic wave on the creeping region was found to occur for identical viscous-elastic and acoustic length scales. Comparing an elastic sphere with an embedded creeping layer to a fully elastic sphere, a significant reduction in magnitude and fluctuations (with regard to wavelength) are observed for both the displacements of the solid and target strength of the sphere. This effect was most significant for identical viscous-elastic and acoustic time scales. This work relates viscous-elastic dynamics to acoustic scattering and may pave the way to the design of novel metamaterials with unique acoustic properties.

Copyright

Corresponding author

Email address for correspondence: amirgat@technion.ac.il

References

Hide All
Arco, R. M., Vélez-Cordero, J. R., Lauga, E. & Zenit, R. 2014 Viscous pumping inspired by flexible propulsion. Bioinspir. Biomim. 9 (3), 036007.
Balmforth, N. J., Craster, R. V. & Hewitt, I. J. 2015 The speed of an inclined ruck. Proc. R. Soc. Lond. A 471, 20140740.
Bowen, P. T. & Urzhumov, Y. A. 2016 Three forms of omnidirectional acoustic invisibility engineered using fast elastodynamic transfer-matrix method. J. Opt. 18 (4), 044025.
Camalet, S. & Jülicher, F. 2000 Generic aspects of axonemal beating. New J. Phys. 2, 24.124.23.
Canic, S. & Mikelic, A. 2003 Effective equations modeling the flow of a viscous incompressible fluid through a long elastic tube arising in the study of blood flow through small arteries. SIAM J. Appl. Dyn. Syst. 2 (3), 431463.
Chauhan, A. & Radke, C. J. 2002 Settling and deformation of a thin elastic shell on a thin fluid layer lying on a solid surface. J. Colloid Interface Sci. 245 (1), 187197.
Duchemin, L. & Vandenberghe, N. 2014 Impact dynamics for a floating elastic membrane. J. Fluid Mech. 756, 544554.
Duprat, C. & Stone, H. A. 2015 Fluid–Structure Interactions in Low-Reynolds-Number Flows. Royal Society of Chemistry.
Elbaz, S. B. & Gat, A. D. 2014 Dynamics of viscous liquid within a closed elastic cylinder subject to external forces with application to soft robotics. J. Fluid Mech. 758, 221237.
Faran, J. J. Jr 1951 Sound scattering by solid cylinders and spheres. J. Acoust. Soc. Am. 23 (4), 405418.
Guild, M. D., Alu, A. & Haberman, M. R. 2011 Cancellation of acoustic scattering from an elastic sphere. J. Acoust. Soc. Am. 129 (3), 13551365.
Guild, M. D., Hicks, A. J., Haberman, M. R., Alù, A. & Wilson, P. S. 2015 Acoustic scattering cancellation of irregular objects surrounded by spherical layers in the resonant regime. J. Appl. Phys. 118 (16), 164903.
Han, Z., Tao, C., Zhou, D., Sun, Y., Zhou, C., Ren, Q. & Roberts, C. J. 2014 Air puff induced corneal vibrations: theoretical simulations and clinical observations. J. Refract. Surg. 30 (3), 208213.
Heil, M. 1997 Stokes flow in collapsible tubes – computation and experiment. J. Fluid Mech. 353, 285312.
Hewitt, I. J., Balmforth, N. J. & De Bruyn, J. R. 2015 Elastic-plated gravity currents. Eur. J. Appl. Maths 26 (01), 131.
Hosoi, A. E. & Mahadevan, L. 2004 Peeling, healing, and bursting in a lubricated elastic sheet. Phys. Rev. Lett. 93 (13), 137802.
Howell, P., Kozyreff, G. & Ockendon, J. 2009 Applied Solid Mechanics. Cambridge University Press.
Huang, X., Zhong, S. & Liu, X. 2014 Acoustic invisibility in turbulent fluids by optimised cloaking. J. Fluid Mech. 749, 460477.
Lister, J. R., Peng, G. G. & Neufeld, J. A. 2013 Viscous control of peeling an elastic sheet by bending and pulling. Phys. Rev. Lett. 111 (15), 154501.
Logan, N. A. 1965 Survey of some early studies of the scattering of plane waves by a sphere. Proc. IEEE 53 (8), 773785.
Love, A. E. H. 1927 A Treatise on the Mathematical Theory of Elasticity, vol. 1. Cambridge University Press.
Lowe, T. W. & Pedley, T. J. 1995 Computation of Stokes flow in a channel with a collapsible segment. J. Fluids Struct. 9 (8), 885905.
McEwan, A. D. & Taylor, G. I. 1966 The peeling of a flexible strip attached by a viscous adhesive. J. Fluid Mech. 26 (01), 115.
Skelton, E. A. & James, J. H. 1997 Theoretical Acoustics of Underwater Structures. Imperial College Press.
Tony, S. Y., Lauga, E. & Hosoi, A. E. 2006 Experimental investigations of elastic tail propulsion at low Reynolds number. Phys. Fluids 18 (9), 091701.
Torrent, D. & Sánchez-Dehesa, J. 2008 Acoustic cloaking in two dimensions: a feasible approach. New J. Phys. 10 (6), 063015.
Wiggins, C. H. & Goldstein, R. E. 1998 Flexive and propulsive dynamics of elastica at low Reynolds number. Phys. Rev. Lett. 80 (17), 3879.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Dynamics of an elastic sphere containing a thin creeping region and immersed in an acoustic region for similar viscous-elastic and acoustic time and length scales

  • Yonatan Friedman (a1) and Amir D. Gat (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed