Skip to main content Accessibility help
×
Home

Drawing of micro-structured fibres: circular and non-circular tubes

  • Yvonne M. Stokes (a1), Peter Buchak (a2), Darren G. Crowdy (a2) and Heike Ebendorff-Heidepriem (a3)

Abstract

A general mathematical framework is presented for modelling the pulling of optical glass fibres in a draw tower. The only modelling assumption is that the fibres are slender; cross-sections along the fibre can have general shape, including the possibility of multiple holes or channels. A key result is to demonstrate how a so-called reduced time variable $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\tau $ serves as a natural parameter in describing how an axial-stretching problem interacts with the evolution of a general surface-tension-driven transverse flow via a single important function of $\tau $ , herein denoted by $H(\tau )$ , derived from the total rescaled cross-plane perimeter. For any given preform geometry, this function $H(\tau )$ may be used to calculate the tension required to produce a given fibre geometry, assuming only that the surface tension is known. Of principal practical interest in applications is the ‘inverse problem’ of determining the initial cross-sectional geometry, and experimental draw parameters, necessary to draw a desired final cross-section. Two case studies involving annular tubes are presented in detail: one involves a cross-section comprising an annular concatenation of sintering near-circular discs, the cross-section of the other is a concentric annulus. These two examples allow us to exemplify and explore two features of the general inverse problem. One is the question of the uniqueness of solutions for a given set of experimental parameters, the other concerns the inherent ill-posedness of the inverse problem. Based on these examples we also give an experimental validation of the general model and discuss some experimental matters, such as buckling and stability. The ramifications for modelling the drawing of fibres with more complicated geometries, and multiple channels, are discussed.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Drawing of micro-structured fibres: circular and non-circular tubes
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Drawing of micro-structured fibres: circular and non-circular tubes
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Drawing of micro-structured fibres: circular and non-circular tubes
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence .

Corresponding author

Email address for correspondence: yvonne.stokes@adelaide.edu.au

References

Hide All
Boyd, K., Ebendorff-Heidepriem, H., Monro, T. M. & Munch, J. 2012 Surface tension and viscosity measurement of optical glasses using a scanning $\mathrm{CO}_2$ laser. Opt. Mater. Express 2 (8), 11011110.
Buchak, P., Crowdy, D. G. & Stokes, Y. 2014 Elliptical pore regularization of the inverse problem for microstructured optical fibre fabrication. J. Fluid Mech. (submitted).
Chen, Y. & Birks, T. A. 2013 Predicting hole sizes after fibre drawing without knowing the viscosity. Opt. Mater. Express 3 (3), 346356.
Crowdy, D. G. 2003 Viscous sintering of unimodal and bimodal cylindrical packings with shrinking pores. Eur. J. Appl. Maths 14, 421445.
Crowdy, D. G. & Tanveer, S. 1998a A theory of exact solutions for plane viscous blobs. J. Nonlinear Sci. 8 (3), 261279.
Crowdy, D. G. & Tanveer, S. 1998b A theory of exact solutions for annular viscous blobs. J. Nonlinear Sci. 8 (4), 375400.
Cummings, L. J. & Howell, P. D. 1999 On the evolution of non-axisymmetric viscous fibres with surface tension, inertia and gravity. J. Fluid Mech. 389, 361389.
Cummings, L. J., Howison, S. D. & King, J. R. 1997 Conserved quantities in Stokes flow with free surfaces. Phys. Fluids 9, 477480.
Denn, M. M. 1980 Continuous drawing of liquids to form fibres. Annu. Rev. Fluid Mech. 12, 365387.
DeWynne, J. N., Howell, P. D. & Wilmott, P. 1994 Slender viscous fibres with inertia and gravity. Q. J. Mech. Appl. Maths 47, 541555.
Fitt, A. D., Furusawa, K., Monro, T. M., Please, C. P. & Richardson, D. A. 2002 The mathematical modelling of capillary drawing for holey fibre manufacture. J. Engng Maths 43, 201227.
Gospodinov, P. & Yarin, A. L. 1997 Draw resonance of optical microcapillaries in non-isothermal drawing. Intl J. Multiphase Flow 23, 967976.
Griffiths, I. M. & Howell, P. D. 2007 The surface-tension-driven evolution of a two-dimensional annular viscous tube. J. Fluid Mech. 593, 181208.
Griffiths, I. M. & Howell, P. D. 2008 Mathematical modelling of non-axisymmetric capillary tube drawing. J. Fluid Mech. 605, 181206.
Griffiths, I. M. & Howell, P. D. 2009 The surface-tension-driven retraction of a viscida. SIAM J. Appl. Maths 70 (5), 14531487.
Hopper, R. W. 1990 Plane Stokes flow driven by capillarity on a free surface. J. Fluid Mech. 213, 349375.
Howell, P. D.1994 Extensional thin layer flows. PhD thesis, University of Oxford.
Kaye, A. 1990 Convected coordinates and elongational flow. J. Non-Newtonian Fluid Mech. 40, 5577.
Knight, J. C. 2003 Photonic crystal fibres. Nature 424, 847851.
Kostecki, R., Ebendorff-Heidepriem, H., Warren-Smith, S. C. & Monro, T. M. 2014 Predicting the drawing conditions for microstructured optical fibre fabrication. Opt. Mater. Express 4, 2940.
Langlois, W. 1964 Slow Viscous Flows. Macmillan.
Matovich, M. A. & Pearson, J. R. A. 1969 Spinning a molten threadline. Ind. Engng Chem. Fundam. 8, 512520.
Monro, T. M. & Ebendorff-Heidepriem, H. 2006 Progress in microstructured optical fibres. Annu. Rev. Mater. Res. 36, 467495.
Muskhelishvili, N. I. 1977 Some Basic Problems in the Mathematical Theory of Elasticity. Springer.
Pearson, J. R. A. & Matovich, M. A. 1969 Spinning a molten threadline; stability. Ind. Engng Chem. Fundam. 8, 605609.
Richardson, S. 1992 Two-dimensional slow viscous flows with time dependent free boundaries driven by surface tension. Eur. J. Appl. Maths 3, 198207.
Richardson, S. 2000 Plane Stokes flow with time-dependent free boundaries in which the fluid occupies a doubly connected region. Eur. J. Appl. Maths 11, 249269.
Scheid, B., Quiligotti, S., Tranh, B., Gy, R. & Stone, H. A. 2010 On the (de)stabilization of draw resonance due to cooling. J. Fluid Mech. 636, 155176.
Stokes, Y. M., Tuck, E. O. & Schwartz, L. W. 2000 Extensional fall of a very viscous fluid drop. Q. J. Mech. Appl. Maths 53, 565582.
Taroni, M., Breward, C. J. W., Cummings, L. J. & Griffiths, I. M. 2013 Asymptotic solutions of glass temperature profiles during steady optical fibre drawing. J. Engng Maths 80, 120.
Tchavdarov, B., Yarin, A. L. & Radev, S. 1993 Buckling of thin liquid jets. J. Fluid Mech. 253, 593615.
van de Vorst, G. A. L. & Mattheij, R. M. M. 1995 A BEM-BDF scheme for curvature driven moving Stokes flows. J. Comput. Phys. 120, 114.
Voyce, C. J., Fitt, A. D. & Monro, T. M. 2004 Mathematical model of the spinning of microstructured fibres. Opt. Express 12 (23), 58105820.
Voyce, C. J., Fitt, A. D. & Monro, T. M. 2008 The mathematical modelling of rotating capillary tubes for holey-fibre manufacture. J. Engng Maths 60, 6987.
Wilson, S. D. R. 1988 The slow dripping of a viscous fluid. J. Fluid Mech. 190, 561570.
Wylie, J. J., Huang, H. & Miura, R. M. 2007 Thermal instability in drawing viscous threads. J. Fluid Mech. 570, 116.
Xue, S. C., Large, M. C. J., Barton, G. W., Tanner, R. I., Poladian, L. & Lwin, R. 2005a Role of material properties and drawing conditions in the fabrication of microstructured optical fibres. J. Lightwave Technol. 24, 853860.
Xue, S. C., Tanner, R. I., Barton, G. W., Lwin, R., Large, M. C. J. & Poladian, L. 2005b Fabrication of microstructured optical fibres – part I: problem formulation and numerical modelling of transient draw process. J. Lightwave Technol. 23, 22452254.
Xue, S. C., Tanner, R. I., Barton, G. W., Lwin, R., Large, M. C. J. & Poladian, L. 2005c Fabrication of microstructured optical fibres – part II: numerical modelling of steady-state draw process. J. Lightwave Technol. 23, 22552266.
Yarin, A. L. 1993 Free Liquid Jets and Films: Hydrodynamics and Rheology. Longman Scientific & Technical and Wiley & Sons.
Yarin, A. L. 1995 Surface-tension-driven flows at low Reynolds number arising in optoelectronic technology. J. Fluid Mech. 286, 173200.
Yarin, A. L., Gospodinov, P. & Roussinov, V. I. 1994 Stability loss and sensitivity in hollow fibre drawing. Phys. Fluids 6, 14541463.
Yarin, A., Rusinov, V. I., Gospodinov, P. & Radev, St. 1989 Quasi one-dimensional model of drawing of glass micro capillaries and approximate solutions. Theor. Appl. Mech. 20 (3), 5562.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed