Skip to main content Accessibility help
×
Home

Drag forces on sparsely packed cube arrays

  • X. I. A. Yang (a1), H. H. A. Xu (a1), X. L. D. Huang (a1) and M.-W. Ge (a2)

Abstract

Flow over aligned and staggered cube arrays is a classic model problem for rough-wall turbulent boundary layers. Earlier studies of this model problem mainly looked at rough surfaces with a moderate coverage density, i.e.  $\unicode[STIX]{x1D706}_{p}>O(3\,\%)$ , where $\unicode[STIX]{x1D706}_{p}$ is the surface coverage density and is defined to be the ratio between the area occupied by the roughness and the total ground area. At lower surface coverage densities, i.e.  $\unicode[STIX]{x1D706}_{p}<O(3\,\%)$ , it is conventionally thought that cubical roughness acts like isolated roughness elements; and that the single-cube drag coefficient, i.e.  $C_{d}\equiv f/(\unicode[STIX]{x1D70C}U_{h}^{2}h^{2})$ , equals $C_{R}$ . Here, $f$ is the drag force on one cubical roughness element, $\unicode[STIX]{x1D70C}=\text{const.}$ is the fluid density, $h$ is the height of the cube, $U_{h}$ is the spatially and temporally averaged wind speed at the cube height, and $C_{R}$ is the drag coefficient of an isolated cube. In this work, we conduct large-eddy simulations and direct numerical simulations of flow over wall-mounted cubes with very low surface coverage densities, i.e.  $0.08\,\%<\unicode[STIX]{x1D706}_{p}<4.4\,\%$ . The large-eddy simulations are at nominally infinite Reynolds numbers. The results challenge the conventional thinking, and we show that, at very low surface coverage densities, the single-cube drag coefficient may increase as a function of $\unicode[STIX]{x1D706}_{p}$ . Our analysis suggests that this behaviour may be attributed to secondary turbulent flows. Secondary turbulent flows are often found above spanwise-heterogeneous roughness. Although the roughness considered in this work is nominally homogeneous, the secondary flows in our simulations are very similar to those observed above spanwise-heterogeneous surface roughness. These secondary vortices redistribute the fluid momentum in the outer layer, leading to high-momentum pathways above the wall-mounted cubes and low-momentum pathways at the two sides of the wall-mounted cubes. As a result, the spatially and temporally averaged wind speed at the cube height, i.e.  $U_{h}$ , is an underestimate of the incoming flow to the cubes, which in turn leads to a large drag coefficient  $C_{d}$ .

Copyright

Corresponding author

Email address for correspondence: gemingwei@ncepu.edu.cn

References

Hide All
Akins, R. E., Peterka, J. A. & Cermak, J. E. 1977 Mean force and moment coefficients for buildings in turbulent boundary layers. J. Wind Engng Ind. Aerodyn. 2 (3), 195209.
Anderson, W., Barros, J. M., Christensen, K. T. & Awasthi, A. 2015 Numerical and experimental study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise heterogeneous roughness. J. Fluid Mech. 768, 316347.
Anderson, W., Yang, J., Shrestha, K. & Awasthi, A. 2018 Turbulent secondary flows in wall turbulence: vortex forcing, scaling arguments, and similarity solution. Environ. Fluid Mech. 18 (6), 13511378.
Arya, S. 1975 A drag partition theory for determining the large-scale roughness parameter and wind stress on the Arctic pack ice. J. Geophys. Res. 80 (24), 34473454.
Balakumar, P., Park, G. & Pierce, B. 2014 DNS, LES, and wall-modeled LES of separating flow over periodic hills. In Proceedings of the Summer Program, pp. 407415.
Barlow, J. F. & Coceal, O.2009 A review of urban roughness sublayer turbulence. Met Office Research and Development. Tech. Rep. 1, 527.
Barros, J. M. & Christensen, K. T. 2014 Observations of turbulent secondary flows in a rough-wall boundary layer. J. Fluid Mech. 748, R1.
Bermejo-Moreno, I., Campo, L., Larsson, J., Bodart, J., Helmer, D. & Eaton, J. K. 2014 Confinement effects in shock wave/turbulent boundary layer interactions through wall-modelled large-eddy simulations. J. Fluid Mech. 758, 562.
Bons, J. P. 2010 A review of surface roughness effects in gas turbines. Trans. ASME J. Turbomach. 132 (2), 021004.
Bou-Zeid, E., Meneveau, C. & Parlange, M. 2005 A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids 17 (2), 025105.
Castillo, M. C., Inagaki, A. & Kanda, M. 2011 The effects of inner- and outer-layer turbulence in a convective boundary layer on the near-neutral inertial sublayer over an urban-like surface. Boundary-Layer Meteorol. 140 (3), 453469.
Cheng, H. & Castro, I. P. 2002 Near wall flow over urban-like roughness. Boundary-Layer Meteorol. 104 (2), 229259.
Cheng, H., Hayden, P., Robins, A. & Castro, I. 2007 Flow over cube arrays of different packing densities. J. Wind Engng Ind. Aerodyn. 95 (8), 715740.
Cheng, W.-C. & Porté-Agel, F. 2015 Adjustment of turbulent boundary-layer flow to idealized urban surfaces: a large-eddy simulation study. Boundary-Layer Meteorol. 155 (2), 249270.
Choi, H. & Moin, P. 2012 Grid-point requirements for large eddy simulation: Chapmans estimates revisited. Phys. Fluids 24 (1), 011702.
Chung, D., Chan, L., MacDonald, M., Hutchins, N. & Ooi, A. 2015 A fast direct numerical simulation method for characterising hydraulic roughness. J. Fluid Mech. 773, 418431.
Coceal, O. & Belcher, S. 2004 A canopy model of mean winds through urban areas. Q. J. R. Meteorol. Soc. 130 (599), 13491372.
Coceal, O., Dobre, A. & Thomas, T. G. 2007a Unsteady dynamics and organized structures from dns over an idealized building canopy. Intl J. Climatol. 27 (14), 19431953.
Coceal, O., Dobre, A., Thomas, T. & Belcher, S. 2007b Structure of turbulent flow over regular arrays of cubical roughness. J. Fluid Mech. 589, 375409.
Coceal, O., Thomas, T., Castro, I. & Belcher, S. 2006 Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Boundary-Layer Meteorol. 121 (3), 491519.
ESDU 1986 Mean fluid forces and moments on rectangular prisms: surface-mounted structures in turbulent shear flow. Engng Sci. Data Item 8003.
Ferster, K. K., Kirsch, K. L. & Thole, K. A. 2018 Effects of geometry, spacing, and number of pin fins in additively manufactured microchannel pin fin arrays. Trans. ASME J. Turbomach. 140 (1), 011007.
Fishpool, G., Lardeau, S. & Leschziner, M. 2009 Persistent non-homogeneous features in periodic channel-flow simulations. Flow Turbul. Combust. 83 (3), 323342.
Giometto, M., Lozano-Duran, A., Park, G. & Moin, P. 2017 Three-dimensional transient channel flow at moderate Reynolds numbers: analysis and wall modeling. In Annual Research Briefs, pp. 6574. Center for Turbulence Research.
Graham, J. & Meneveau, C. 2012 Modeling turbulent flow over fractal trees using renormalized numerical simulation: alternate formulations and numerical experiments. Phys. Fluids 24 (12), 125105.
Harman, I. N. & Finnigan, J. J. 2007 A simple unified theory for flow in the canopy and roughness sublayer. Boundary-Layer Meteorol. 123 (2), 339363.
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.
Inagaki, A., Castillo, M. C. L., Yamashita, Y., Kanda, M. & Takimoto, H. 2012 Large-eddy simulation of coherent flow structures within a cubical canopy. Boundary-Layer Meteorol. 142 (2), 207222.
Jelly, T., Jung, S. & Zaki, T. 2014 Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture. Phys. Fluids 26 (9), 095102.
Jiang, D., Jiang, W., Liu, H. & Sun, J. 2008 Systematic influence of different building spacing, height and layout on mean wind and turbulent characteristics within and over urban building arrays. Wind Struct. 11 (4), 275290.
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.
Joo, J., Medic, G., Philips, D. & Bose, S. 2014 Large-eddy simulation of a compressor rotor. In Proceedings of the Summer Program, p. 467.
von Kármán, T.1931 Mechanical similitude and turbulence, NACA Tech. Memorandum, Rep. No. 611.
Kawai, S. & Larsson, J. 2012 Wall-modeling in large eddy simulation: length scales, grid resolution, and accuracy. Phys. Fluids 24 (1), 015105.
Khalighi, Y., Ham, F., Nichols, J., Lele, S. & Moin, P. 2011 Unstructured large eddy simulation for prediction of noise issued from turbulent jets in various configurations. In 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference), p. 2886.
Kirsch, K. L. & Thole, K. A. 2018 Isolating the effects of surface roughness versus wall shape in numerically optimized, additively manufactured micro cooling channels. Exp. Therm. Fluid Sci. 98, 227238.
Larsson, J., Kawai, S., Bodart, J. & Bermejo-Moreno, I. 2016 Large eddy simulation with modeled wall-stress: recent progress and future directions. Mech. Engng Rev. 3 (1), 15–00418.
Larsson, J., Laurence, S., Bermejo-Moreno, I., Bodart, J., Karl, S. & Vicquelin, R. 2015 Incipient thermal choking and stable shock-train formation in the heat-release region of a scramjet combustor. Part II: large eddy simulations. Combust. Flame 162 (4), 907920.
Lee, J., Jelly, T. O. & Zaki, T. A. 2015 Effect of Reynolds number on turbulent drag reduction by superhydrophobic surface textures. Flow Turbul. Combust. 95 (2–3), 277300.
Lee, J. H., Sung, H. J. & Krogstad, P.-Å 2011 Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall. J. Fluid Mech. 669, 397431.
Lele, S. K. 1994 Compressibility effects on turbulence. Annu. Rev. Fluid Mech. 26 (1), 211254.
Leonardi, S. & Castro, I. P. 2010 Channel flow over large cube roughness: a direct numerical simulation study. J. Fluid Mech. 651, 519539.
Lien, F.-S. & Yee, E. 2004 Numerical modelling of the turbulent flow developing within and over a 3-D building array, Part I: a high-resolution Reynolds-averaged Navier–Stokes approach. Boundary-Layer Meteorol. 112 (3), 427466.
Lozano-Durán, A. & Jiménez, J. 2014 Effect of the computational domain on direct simulations of turbulent channels up to Re 𝜏 = 4200. Phys. Fluids 26 (1), 011702.
Macdonald, R. 2000 Modelling the mean velocity profile in the urban canopy layer. Boundary-Layer Meteorol. 97 (1), 2545.
MacDonald, M., Chung, D., Hutchins, N., Chan, L., Ooi, A. & García-Mayoral, R. 2016 The minimal channel: a fast and direct method for characterising roughness. J. Phys.: Conf. Ser. 708, 012010.
MacDonald, M., Chung, D., Hutchins, N., Chan, L., Ooi, A. & García-Mayoral, R. 2017 The minimal-span channel for rough-wall turbulent flows. J. Fluid Mech. 816, 542.
Macdonald, R., Griffiths, R. & Hall, D. 1998 An improved method for the estimation of surface roughness of obstacle arrays. Atmos. Environ. 32 (11), 18571864.
Mahesh, K., Constantinescu, G. & Moin, P. 2004 A numerical method for large-eddy simulation in complex geometries. J. Comput. Phys. 197 (1), 215240.
Martilli, A. & Santiago, J. L. 2007 CFD simulation of airflow over a regular array of cubes. Part II: analysis of spatial average properties. Boundary-Layer Meteorol. 122 (3), 635654.
Marusic, I., Monty, J. P., Hultmark, M. & Smits, A. J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.
Meinders, E. & Hanjalić, K. 1999 Vortex structure and heat transfer in turbulent flow over a wall-mounted matrix of cubes. Intl J. Heat Fluid Flow 20 (3), 255267.
Meinhart, C. D. & Adrian, R. J. 1995 On the existence of uniform momentum zones in a turbulent boundary layer. Phys. Fluids 7 (4), 694696.
Mejia-Alvarez, R. & Christensen, K. 2010 Low-order representations of irregular surface roughness and their impact on a turbulent boundary layer. Phys. Fluids 22 (1), 015106.
Mejia-Alvarez, R. & Christensen, K. 2013 Wall-parallel stereo particle-image velocimetry measurements in the roughness sublayer of turbulent flow overlying highly irregular roughness. Phys. Fluids 25 (11), 115109.
Meneveau, C. & Katz, J. 2000 Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32 (1), 132.
Millward-Hopkins, J., Tomlin, A., Ma, L., Ingham, D. & Pourkashanian, M. 2011 Estimating aerodynamic parameters of urban-like surfaces with heterogeneous building heights. Boundary-Layer Meteorol. 141 (3), 443465.
Moin, P. 2010 Fundamentals of Engineering Numerical Analysis. Cambridge University Press.
Moody, L. F. 1947 An approximate formula for pipe friction factors. Trans. ASME 69 (12), 10051011.
Nakagawa, H. 2017 Turbulence in Open Channel Flows. Routledge.
Nikuradse, J. 1930 Investigation of turbulent flow in tubes of non-circular cross section. Engng Archive (Ingen. Arch.) 1, 306332.
Nugroho, B., Hutchins, N. & Monty, J. 2013 Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and directional surface roughness. Intl J. Heat Fluid Flow 41, 90102.
Park, G. I. 2017 Wall-modeled large-eddy simulation of a high Reynolds number separating and reattaching flow. AIAA J. 55, 37093721.
Park, G. I. & Moin, P. 2014 An improved dynamic non-equilibrium wall-model for large eddy simulation. Phys. Fluids 26 (1), 3748.
Perret, L., Piquet, T., Basley, J. & Mathis, R.2017 Effects of plan area densities of cubical roughness elements on turbulent boundary layers. In ScienceConf, CFM.
Perry, A. E., Schofield, W. H. & Joubert, P. N. 1969 Rough wall turbulent boundary layers. J. Fluid Mech. 37 (2), 383413.
Raupach, M. 1992 Drag and drag partition on rough surfaces. Boundary-Layer Meteorol. 60 (4), 375395.
Raupach, M., Antonia, R. & Rajagopalan, S. 1991 Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44 (1), 125.
Reynolds, R., Hayden, P., Castro, I. & Robins, A. 2007 Spanwise variations in nominally two-dimensional rough-wall boundary layers. Exp. Fluids 42 (2), 311320.
Schlichting, H. & Gersten, K. 2016 Boundary-Layer Theory. Springer.
Schultz, M. P. & Flack, K. A. 2009 Turbulent boundary layers on a systematically varied rough wall. Phys. Fluids 21 (1), 015104.
Shao, Y. & Yang, Y. 2005 A scheme for drag partition over rough surfaces. Atmos. Environ. 39 (38), 73517361.
Shao, Y. & Yang, Y. 2008 A theory for drag partition over rough surfaces. J. Geophys. Res. 113, F02S05.
de Silva, C. M., Hutchins, N. & Marusic, I. 2016 Uniform momentum zones in turbulent boundary layers. J. Fluid Mech. 786, 309331.
Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E. & Mavriplis, D.2014 CFD vision 2030 study: a path to revolutionary computational aerosciences. Technical Report, NASA Langley Research Center, NASA/CR-2014-218178. See http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140003093.pdf/.
Squire, D., Morrill-Winter, C., Hutchins, N., Schultz, M., Klewicki, J. & Marusic, I. 2016 Comparison of turbulent boundary layers over smooth and rough surfaces up to high Reynolds numbers. J. Fluid Mech. 795, 210240.
Stevens, R. J., Wilczek, M. & Meneveau, C. 2014 Large-eddy simulation study of the logarithmic law for second- and higher-order moments in turbulent wall-bounded flow. J. Fluid Mech. 757, 888907.
Stoesser, T., Mathey, F., Frohlich, J. & Rodi, W. 2003 Les of flow over multiple cubes. Ercoftac Bull. 56, 1519.
Taylor, R., Coleman, H. & Hodge, B. 1985 Prediction of turbulent rough-wall skin friction using a discrete element approach. Trans. ASME J. Fluids Engng 107 (2), 251257.
Vanderwel, C. & Ganapathisubramani, B. 2015 Effects of spanwise spacing on large-scale secondary flows in rough-wall turbulent boundary layers. J. Fluid Mech. 774, R2.
Vermaas, D., Uijttewaal, W. & Hoitink, A. 2011 Lateral transfer of streamwise momentum caused by a roughness transition across a shallow channel. Water Resour. Res. 47, W02530.
Wang, Z.-Q. & Cheng, N.-S. 2005 Secondary flows over artificial bed strips. Adv. Water Resour. 28 (5), 441450.
Williamson, J. 1980 Low-storage Runge–Kutta schemes. J. Comput. Phys. 35 (1), 4856.
Willingham, D., Anderson, W., Christensen, K. T. & Barros, J. M. 2014 Turbulent boundary layer flow over transverse aerodynamic roughness transitions: induced mixing and flow characterization. Phys. Fluids 26 (2), 025111.
Xie, Z. & Castro, I. P. 2006 Les and rans for turbulent flow over arrays of wall-mounted obstacles. Flow Turbul. Combust. 76 (3), 291312.
Yang, X. I. A. 2016 On the mean flow behaviour in the presence of regional-scale surface roughness heterogeneity. Boundary-Layer Meteorol. 161 (1), 127143.
Yang, X. I. A. & Abkar, M. 2018 A hierarchical random additive model for passive scalars in wall-bounded flows at high Reynolds numbers. J. Fluid Mech. 842, 354380.
Yang, J. & Anderson, W. 2018 Numerical study of turbulent channel flow over surfaces with variable spanwise heterogeneities: topographically-driven secondary flows affect outer-layer similarity of turbulent length scales. Flow Turbul. Combust. 100 (1), 117.
Yang, X., Bose, S. & Moin, P. 2017a A physics-based interpretation of the slip-wall LES model. In Annual Research Briefs, pp. 6574. Center for Turbulence Research.
Yang, X. I. A. & Meneveau, C. 2016 Large eddy simulations and parameterisation of roughness element orientation and flow direction effects in rough wall boundary layers. J. Turbul. 17 (11), 10721085.
Yang, X. I. A. & Meneveau, C. 2017 Modelling turbulent boundary layer flow over fractal-like multiscale terrain using large-eddy simulations and analytical tools. Phil. Trans. R. Soc. Lond. A 375 (2091), 20160098.
Yang, X. I. A., Park, G. I. & Moin, P. 2017b Log-layer mismatch and modeling of the fluctuating wall stress in wall-modeled large-eddy simulations. Phys. Rev. Fluids 2 (10), 104601.
Yang, X. I. A., Sadique, J., Mittal, R. & Meneveau, C. 2016 Exponential roughness layer and analytical model for turbulent boundary layer flow over rectangular-prism roughness elements. J. Fluid Mech. 789, 127165.
You, D. & Moin, P. 2007 A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries. Phys. Fluids 19 (6), 065110.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Drag forces on sparsely packed cube arrays

  • X. I. A. Yang (a1), H. H. A. Xu (a1), X. L. D. Huang (a1) and M.-W. Ge (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed