Skip to main content Accessibility help
×
Home

Drag forces on a bed particle in open-channel flow: effects of pressure spatial fluctuations and very-large-scale motions

  • S. M. Cameron (a1), V. I. Nikora (a1) and I. Marusic (a2)

Abstract

The fluctuating drag forces acting on spherical roughness elements comprising the bed of an open-channel flow have been recorded along with synchronous measurements of the surrounding velocity field using stereoscopic particle image velocimetry. The protrusion of the target particle, equipped with a force sensor, was systematically varied between zero and one-half diameter relative to the hexagonally packed adjacent spheres. Premultiplied spectra of drag force fluctuations were found to have bimodal shapes with a low-frequency ( ${\approx}0.5~\text{Hz}$ ) peak corresponding to the presence of very-large-scale motions (VLSMs) in the turbulent flow. The high-frequency ( $\gtrapprox 4~\text{Hz}$ ) region of the drag force spectra cannot be explained by velocity time series extracted from points around the particle, but instead appears to be dominated by the action of pressure gradients in the overlying flow field. For small particle protrusions, this high-frequency region contributes a majority of the drag force variance, while the relative importance of the low-frequency drag force fluctuations increases with increasing protrusion. The amplitude of high-frequency drag force fluctuations is modulated by the VLSMs irrespective of particle protrusion. These results provide some insight into the mechanics of bed particle stability and indicate that the optimum conditions for particle entrainment may occur when a low-pressure region embedded in the high-velocity portion of a VLSM overlays a particle.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Drag forces on a bed particle in open-channel flow: effects of pressure spatial fluctuations and very-large-scale motions
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Drag forces on a bed particle in open-channel flow: effects of pressure spatial fluctuations and very-large-scale motions
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Drag forces on a bed particle in open-channel flow: effects of pressure spatial fluctuations and very-large-scale motions
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: s.cameron@abdn.ac.uk

References

Hide All
Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19 (4), 041301.10.1063/1.2717527
Amir, M., Nikora, V. I. & Stewart, M. T. 2014 Pressure forces on sediment particles in turbulent open-channel flow: a laboratory study. J. Fluid Mech. 757, 458497.10.1017/jfm.2014.498
Ancey, C., Davison, A. C., Böhm, T., Jodeau, M. & Frey, P. 2008 Entrainment and motion of coarse particles in a shallow water stream down a steep slope. J. Fluid Mech. 595, 83114.10.1017/S0022112007008774
Bandyopadhyay, P. R. & Hussain, A. K. M. F. 1984 The coupling between scales in shear flows. Phys. Fluids 27 (9), 22212228.10.1063/1.864901
Bayazit, M. 1976 Free surface flow in a channel of large relative roughness. J. Hydraul. Res. 14 (2), 115126.10.1080/00221687609499676
Cameron, S. M., Nikora, V. I. & Stewart, M. T. 2017 Very-large-scale motions in rough-bed open-channel flow. J. Fluid Mech. 814, 416429.10.1017/jfm.2017.24
Celik, A. O., Diplas, P. & Dancey, C. L. 2014 Instantaneous pressure measurements on a spherical grain under threshold flow conditions. J. Fluid Mech. 741, 6097.10.1017/jfm.2013.632
Chan-Braun, C., García-Villalba, M. & Uhlmann, M. 2011 Force and torque acting on particles in a transitionally rough open-channel flow. J. Fluid Mech. 684, 441474.10.1017/jfm.2011.311
Chan-Braun, C., García-Villalba, M. & Uhlmann, M. 2013 Spatial and temporal scales of force and torque acting on wall-mounted spherical particles in open channel flow. Phys. Fluids 25 (7), 075103.10.1063/1.4813806
Detert, M., Nikora, V. & Jirka, G. H. 2010 Synoptic velocity and pressure fields at the water–sediment interface of streambeds. J. Fluid Mech. 660, 5586.10.1017/S0022112010002545
Dey, S. 2014 Fluvial Hydrodynamics: Hydrodynamic and Sediment Transport Phenomena. Springer.10.1007/978-3-642-19062-9
Dwivedi, A.2010 Mechanics of sediment entrainment. PhD thesis, The University of Auckland.
Dwivedi, A., Melville, B. W., Shamseldin, A. Y. & Guha, T. K. 2010 Drag force on a sediment particle from point velocity measurements: a spectral approach. Water Resour. Res. 46 (10), W10529.10.1029/2009WR008643
Fenton, J. D. & Abbott, J. E. 1977 Initial movement of grains on a stream bed: the effect of relative protrusion. Proc. R. Soc. Lond. A 352 (1671), 523537.10.1098/rspa.1977.0014
Hofland, B.2005 Rock and roll: turbulence-induced damage to granular bed protections. PhD thesis, Delft University of Technology.
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.10.1017/S0022112006003946
Jacobi, I. & McKeon, B. J. 2013 Phase relationships between large and small scales in the turbulent boundary layer. Exp. Fluids 54 (3), 1481.10.1007/s00348-013-1481-y
Kidanemariam, A. G. & Uhlmann, M. 2017 Formation of sediment patterns in channel flow: minimal unstable systems and their temporal evolution. J. Fluid Mech. 818, 716743.10.1017/jfm.2017.147
Kim, K. C. & Adrian, R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417422.10.1063/1.869889
Marusic, I., Mathis, R. & Hutchins, N. 2010 Predictive model for wall-bounded turbulent flow. Science 329 (5988), 193196.10.1126/science.1188765
Mathis, R., Hutchins, N. & Marusic, I. 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.10.1017/S0022112009006946
Mazzuoli, M. & Uhlmann, M. 2017 Direct numerical simulation of open-channel flow over a fully rough wall at moderate relative submergence. J. Fluid Mech. 824, 722765.10.1017/jfm.2017.371
Monin, A. S. & Yaglom, A. M. 2007 Statistical Fluid Mechanics, Volume II: Mechanics of Turbulence. Dover.
Nikora, V., Cameron, S., Albayrak, I., Miler, O., Nikora, N., Siniscalchi, F., Stewart, M. & O’Hare, M. 2012 Flow–biota interactions in aquatic systems: scales, mechanisms, and challenges. In Environmental Fluid Mecahanics: Memorial Volume in Honour of Prof. Gerhard H. Jirka (ed. Rodi, W. & Uhlmannm, M.), chap. 11, pp. 217235. CRC Press.
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23 (1), 601639.10.1146/annurev.fl.23.010191.003125
Schmeeckle, M. W., Nelson, J. M. & Shreve, R. L. 2007 Forces on stationary particles in near-bed turbulent flows. J. Geophys. Res. 112 (F2), F02003.10.1029/2006JF000536
Shields, A.1936 Anwendung der aehnlichkeitsmechanik und der turbulenzforschung auf die geschiebebewegung. PhD thesis, Technical University Berlin.
Smart, G. M. & Habersack, H. M. 2007 Pressure fluctuations and gravel entrainment in rivers. J. Hydraul. Res. 45 (5), 661673.10.1080/00221686.2007.9521802
Stewart, M. T., Cameron, S. M., Nikora, V. I., Zampiron, A. & Marusic, I. 2018 Hydraulic resistance in open-channel flows over self-affine rough beds. J. Hydraul. Res. (in press).10.1080/00221686.2018.1473296
Tsinober, A. 2001 An Informal Introduction to Turbulence. Springer.
Tsuji, Y., Marusic, I. & Johansson, A. V. 2016 Amplitude modulation of pressure in turbulent boundary layer. Intl J. Heat Fluid Flow 61, 211.10.1016/j.ijheatfluidflow.2016.05.019
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed