## References

Adrian, R. J. & Westerweel, J.
2011
Particle Image Velocimetry. Cambridge University Press.

Barré, S. & Kobus, J. M.
2010
Comparison between common models of forces on oar blades and forces measured by towing tank tests. Proc. Inst. Mech. Engrs P
224 (1), 37–50.

Bearman, P. W.
1971
An investigation of the forces on flat plates normal to a turbulent flow. J. Fluid Mech.
46 (1), 177–198.

Bush, J. W. M. & Hu, D. L.
2006
Walking on water: biolocomotion at the interface. Annu. Rev. Fluid Mech.
38, 339–369.

Caplan, N., Coppel, A. & Gardner, T.
2010
A review of propulsive mechanisms in rowing. Proc. Inst. Mech. Engrs P
224 (1), 1–8.

Caplan, N. & Gardner, T. N.
2007a
A fluid dynamic investigation of the big blade and macon oar blade designs in rowing propulsion. J. Sports Sci.
25 (6), 643–650.

Caplan, N. & Gardner, T. N.
2007b
Optimization of oar blade design for improved performance in rowing. J. Sports Sci.
25 (13), 1471–1478.

Cohen, I. M. & Kundu, P. K.
2007
Fluid Mechanics. Academic.

Coppel, A., Gardner, T., Caplan, N. & Hargreaves, D.
2008
Numerical modelling of the flow around rowing oar blades (P71). In The Engineering of Sport 7, pp. 353–361. Springer.

Coppel, A., Gardner, T. N., Caplan, N. & Hargreaves, D. M.
2010
Simulating the fluid dynamic behaviour of oar blades in competition rowing. Proc. Inst. Mech. Engrs P
224 (1), 25–35.

Crowe, C. T., Schwarzkopf, J. D., Sommerfeld, M. & Tsuji, Y.
2011
Multiphase Flows with Droplets and Particles. CRC Press.

Dickinson, M. H. & Götz, K. G.
1993
Unsteady aerodynamic performance of model wings at low Reynolds numbers. J. Expl Biol.
174 (1), 45–64.

Fage, A. & Johansen, F. C.
1927
On the flow of air behind an inclined flat plate of infinite span. Proc. R. Soc. Lond. A
116 (773), 170–197.

Fernandez-Feria, R. & Alaminos-Quesada, J.
2018
Unsteady thrust, lift and moment of a two-dimensional flapping thin airfoil in the presence of leading-edge vortices: a first approximation from linear potential theory. J. Fluid Mech.
851, 344–373.

Gharib, M., Rambod, E. & Shariff, K.
1998
A universal time scale for vortex ring formation. J. Fluid Mech.
360, 121–140.

Hemmati, A., Wood, D. H. & Martinuzzi, R. J.
2016
Effect of side-edge vortices and secondary induced flow on the wake of normal thin flat plates. Intl J. Heat Fluid Flow
61, 197–212.

Hoerner, S. F.
1965
Fluid-dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance. Hoerner Fluid Dynamics.

Hsieh, S. T.
2003
Three-dimensional hindlimb kinematics of water running in the plumed basilisk lizard (Basiliscus plumifrons). J. Expl Biol.
206 (23), 4363–4377.

Jacobs, A. F. G.
1985
The normal-force coefficient of a thin closed fence. Boundary-Layer Meteorol.
32 (4), 329–335.

Kim, H., Jeong, K. & Seo, T.
2017
Analysis and experiment on the steering control of a water-running robot using hydrodynamic forces. J. Bionic Engng
14 (1), 34–46.

Koumoutsakos, P. & Shiels, D.
1996
Simulations of the viscous flow normal to an impulsively started and uniformly accelerated flat plate. J. Fluid Mech.
328, 177–227.

Krasny, R. & Nitsche, M.
2002
The onset of chaos in vortex sheet flow. J. Fluid Mech.
454, 47–69.

Leroyer, A., Barré, S., Kobus, J. M. & Visonneau, M.
2010
Influence of free surface, unsteadiness and viscous effects on oar blade hydrodynamic loads. J. Sports Sci.
28 (12), 1287–1298.

Lian, Q.-X. & Huang, Z.
1989
Starting flow and structures of the starting vortex behind bluff bodies with sharp edges. Exp. Fluids
8 (1–2), 95–103.

Luchini, P. & Tognaccini, R.
2002
The start-up vortex issuing from a semi-infinite flat plate. J. Fluid Mech.
455, 175–193.

Luff, J. D., Drouillard, T., Rompage, A. M., Linne, M. A. & Hertzberg, J. R.
1999
Experimental uncertainties associated with particle image velocimetry (PIV) based vorticity algorithms. Exp. Fluids
26 (1–2), 36–54.

Matsuuchi, K., Miwa, T., Nomura, T., Sakakibara, J., Shintani, H. & Ungerechts, B. E.
2009
Unsteady flow field around a human hand and propulsive force in swimming. J. Biomech.
42 (1), 42–47.

Meirovitch, L.
2001
Fundamentals of Vibrations. McGraw-Hill.

Patton, K. T.1965 An experimental investigation of hydrodynamic mass and mechanical impedances. MS Thesis, Univ. of Rhode Island.

Payne, P. R.
1981
The virtual mass of a rectangular flat plate of finite aspect ratio. Ocean Engng
8 (5), 541–545.

Prandtl, L.
1904
Über flussigkeitsbewegung bei sehr kleiner reibung. In Verhandl. III, Internat. Math.-Kong., pp. 484–491. Teubner.

Pullin, D. I.
1978
The large-scale structure of unsteady self-similar rolled-up vortex sheets. J. Fluid Mech.
88 (3), 401–430.

Ringuette, M. J., Milano, M. & Gharib, M.
2007
Role of the tip vortex in the force generation of low-aspect-ratio normal flat plates. J. Fluid Mech.
581, 453–468.

Robert, Y., Leroyer, A., Barré, S., Rongre, F., Queutey, P. & Visonneau, M.
2014
Fluid mechanics in rowing: the case of the flow around the blades. Proc. Engng
72, 744–749.

Savitzky, A. & Golay, M. J. E.
1964
Smoothing and differentiation of data by simplified least squares procedures. Analyt. Chem.
36 (8), 1627–1639.

Schneider, K., Paget-Goy, M., Verga, A. & Farge, M.
2014
Numerical simulation of flows past flat plates using volume penalization. Comput. Appl. Maths
33 (2), 481–495.

Schubauer, G. B. & Dryden, H. L.1937 The effect of turbulence on the drag of flat plates. *NACA Annu. Rep.* 22, pp. 129–133.

Sliasas, A. & Tullis, S.
2009
Numerical modelling of rowing blade hydrodynamics. Sports Engng
12 (1), 31–40.

Tullis, S., Galipeau, C. & Morgoch, D.
2018
Detailed on-water measurements of blade forces and stroke efficiencies in sprint canoe. Proceedings
2 (6), 306.

West, G. S. & Apelt, C. J.
1982
The effects of tunnel blockage and aspect ratio on the mean flow past a circular cylinder with Reynolds numbers between 104 and 105. J. Fluid Mech.
114, 361–377.

Williamson, C. H. K.
1996
Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech.
28 (1), 477–539.

Xu, L. & Nitsche, M.
2015
Start-up vortex flow past an accelerated flat plate. Phys. Fluids
27 (3), 033602.

Yu, Y. T.
1945
Virtual masses of rectangular plates and parallelepipeds in water. J. Appl. Phys.
16 (11), 724–729.