Skip to main content Accessibility help

Disturbance energy growth in core–annular flow

  • A. Orazzo (a1), G. Coppola (a1) and L. de Luca (a1)


The linear stability of the horizontal pipe flow of an equal density oil–water mixture, arranged as a core–annular flow (CAF), is here reconsidered from the point of view of non-modal analysis in order to assess the effects of non-normality of the linearized Navier–Stokes operator on the transient evolution of small disturbances. The aim of this investigation is to give insight into physical situations in which poor agreement occurs between the predictions of linear modal theory and classical experiments. The results exhibit high transient amplifications of the energy of three-dimensional perturbations and, in analogy with single-fluid pipe flow, the largest amplifications arise for non-axisymmetric disturbances of vanishing axial wavenumber. Energy analysis shows that the mechanisms leading to these transient phenomena mostly occur in the annulus, occupied by the less viscous fluid. Consequently, higher values of energy amplifications are obtained by increasing the gap between the core and the pipe wall and the annular Reynolds number. It is argued that these linear transient mechanisms of disturbance amplification play a key role in explaining the transition to turbulence of CAF.


Corresponding author

Email address for correspondence:


Hide All
Ash, R. L. & Khorrami, M. R. 1995 Vortex stability. In Fluid Vortices, pp. 317372. Kluwer.
Charles, M. E., Govier, G. W. & Hodgson, G. W. 1961 The horizontal pipeline flow of equal density oil–water mixtures. Can. J. Chem. Engng 39, 1736.
Charles, M. E. & Redberger, P. J. 1962 The reduction of pressure gradients in oil pipelines by the addition of water: numerical analysis of stratified flow. Can. J. Chem. Engng 40 (2), 7075.
Chen, K. & Joseph, D. D. 1991 Lubricated pipelining: stability of core–annular flow. Part 4. Ginzburg–Landau equations. J. Fluid Mech. 227, 226260.
Coppola, G., Orazzo, A. & de Luca, L. 2012 Non-modal instability of core–annular flow. Int. J. Nonlinear Sci. Numer. Simul. 13, 405415.
Coppola, G. & Semeraro, O. 2011 Interfacial instability of two rotating viscous immiscible fluids in a cylinder. Phys. Fluids 23, 064105.
Hickox, C. E. 1971 Instability due to viscosity and density stratification in axisymmetric pipe flow. Phys. Fluids 14, 251262.
Hu, H. H. & Joseph, D. D. 1989 Lubricated pipelining: stability of core–annular flow. Part 2. J. Fluid Mech. 205, 359396.
Joseph, D. D. & Renardy, Y. Y. 1991 Fundamentals of Two-Fluid Dynamics. Springer.
Joseph, D. D., Renardy, Y. & Renardy, M. 1985 Instability of the flow of immiscible liquids with different viscosities in a pipe. J. Fluid Mech. 141, 309317.
Khorrami, M. R., Malik, M. R. & Ash, R. L. 1989 Application of spectral collocation techniques to the stability of swirling flows. J. Comput. Phys. 81, 206229.
MacLean, D. L. 1973 A theoretical analysis of bicomponent flow and the problem of interface shape. Trans. Soc. Rheol. 17, 385399.
Malik, S. & Hooper, A. P. 2007 Three-dimensional disturbances in channel flows. Phys. Fluids 19, 052102.
Miesen, R., Beijnon, G., Duijvestijn, P. E. M., Oliemans, R. V. A. & Verheggen, T. 1992 Interfacial waves in core–annular flow. J. Fluid Mech. 238, 97117.
Oliemans, R. V. A. & Ooms, G. 1986 Core–annular flow of oil and water through a pipeline. Multiphase Sci. Technol. 2, 427476.
Papageorgiou, D. T., Maldarelli, C. & Rumschitzki, D. S. 1990 Nonlinear interfacial stability of core–annular film flows. Phys. Fluids A 2 (3), 340352.
Preziosi, L., Chen, K. & Joseph, D. D. 1989 Lubricated pipelining: stability of core–annular flow. J. Fluid Mech. 201, 323356.
Schmid, P. J. 2007 Non-modal stability theory. Annu. Rev. Fluid Mech. 39, 129162.
Schmid, P. J. & Henningson, D. S. 1994 Optimal energy density growth in Hagen–Poiseuille flow. J. Fluid Mech. 277, 197225.
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flow. Springer.
Sotgia, G., Tartarini, P. & Stalio, E. 2008 Experimental analysis of flow regimes and pressure drop reduction in oil–water mixtures. Intl J. Multiphase Flow 34, 11611174.
Trefethen, L. N. & Embree, M. 2005 Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press.
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261, 578584.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed