Skip to main content Accessibility help

Direct simulations of a rough-wall channel flow

  • TOMOAKI IKEDA (a1) and PAUL A. DURBIN (a2)


In this study, we performed simulations of turbulent flow over rectangular ribs transversely mounted on one side of a plane in a channel, with the other side being smooth. The separation between ribs is large enough to avoid forming stable vortices in the spacing, which exhibits k-type, or sand-grain roughness. The Reynolds number Reτ of our representative direct numerical simulation case is 460 based on the smooth-wall friction velocity and the channel half-width. The roughness height h is estimated as 110 wall units based on the rough-wall friction velocity. The velocity profile and kinetic energy budget verify the presence of an equilibrium, logarithmic layer at y≳2h. In the roughness sublayer, however, a significant turbulent energy flux was observed. A high-energy region is formed by the irregular motions just above the roughness. Visualizations of vortical streaks, disrupted in all three directions in the roughness sublayer, indicate that the three-dimensional flow structure of sand-grain roughness is replicated by the two-dimensional roughness, and that this vortical structure is responsible for the high energy production. The difference in turbulence structure between smooth- and rough-wall layers can also be seen in other flow properties, such as anisotropy and turbulence length scales.



Hide All
Akselvoll, K. & Moin, P. 1995 Large eddy simulation of turbulent confined coannular jets and turbulent flow over a backward facing step. Rep. TF-63, Thermosciences Division, Dept. of Mechanical Engineering, Stanford University.
Arora, R., Kuo, K. K. & Razdan, M. K. 1982 Near-wall treatment for turbulent boudary-layer computations. AIAA J. 20, 14811482.
Ashrafian, A. & Andersson, H. I. 2003 DNS of turbulent flow in a rod-roughened channel. In Proc. Third Intl Symp. on Turbulence and Shear Flow Phenomena, vol. 1, pp. 117–122. Sendai, Japan.
Bandyopadhyay, P. R. 1985 Rough-wall turbulent boundary layers in the transition regime. J. Fluid Mech. 180, 231266.
Browne, L. W. B., Antonia, R. A. & Shah, D. A. 1987 Turbulent energy dissipation in a wake. J. Fluid Mech. 179, 307326.
Brunet, Y. & Irvine, M. R. 2000 The control of coherent eddies in vegetation canopies: streamwise structure spacing, canopy shear scale and atmospheric stability. Boundary-Layer Met. 94, 139163.
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids 4 (8), 16371650.
Cherukat, P., Na, Y., Hanratty, T. J. & McLaughlin, J. B. 1998 Direct numerical simulation of a fully developed turbulent flow over a wavy wall. Theoret. Comput. Fluid Dyn. 11, 109134.
Cui, J., Patel, V. C. & Lin, C.-L. 2003 Large-eddy simulation of turbulent flow in a channel with rib roughness. Intl J. Heat Fluid Flow 24, 372388.
De Angelis, V., Lombardi, P. & Banerjee, S. 1997 Direct numerical simulation of turbulent flow over a wavy wall. Phys. Fluids 9, 24292442.
Djenidi, L., Elavarasan, R. & Antonia, R. A. 1999 The turbulent boundary layer over transverse square cavities. J. Fluid Mech. 395, 271294.
Durbin, P. A. 1991 Near-wall turbulence closure modeling without ‘damping functions’. Theoret. Comput. Fluid Dyn. 3, 113.
Durbin, P. A. 1995 Separated flow computations with the k–ϵ–v 2 model. AIAA J. 33, 659664.
Durbin, P. A., Medic, G., Seo, J.-M., Song, S. & Eaton, J. K. 2001 Rough wall modification of two-layer k–ϵ. Trans. ASME I: J. Fluids Engng 123, 1621.
Finnigan, J. 2000 Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32, 519571.
Hanjalić, K. & Launder, B. E. 1972 Fully developed asymmetric flow in a plane channel. J. Fluid Mech. 51, 301335.
Ikeda, T. & Durbin, P. A. 2002 Direct simulations of a rough-wall channel flow. Rep. TF-81, Flow Physics and Computation Division, Dept. of Mechanical Engineering, Stanford University.
Ikeda, T. & Durbin, P. A. 2004 Mesh stretch effects on convection in flow simulations. J. Comput. Phys. 123, 110125.
Jackson, P. S. 1981 On the displacement height in the logarithmic velocity profile. J. Fluid Mech. 111, 1525.
Judd, M. J., Raupach, M. R. & Finnigan, J. J. 1996 A wind tunnel study of turbulent flow around single and multiple windbreaks; Part I: Velocity fields. Boundary-Layer Met. 80, 127165.
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308323.
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.
Krogstad, P.-M. & Antonia, R. A. 1994 Structure of turbulent boundary layers on smooth and rough walls. J. Fluid Mech. 277, 121.
Krogstad, P.-M., Antonia, R. A. & Browne, L. W. B. 1992 Comparison between rough- and smooth-wall turbulent boundary layers. J. Fluid Mech. 245, 599617.
Lee, J. 1996 Modeling boundary layer flows over rough surfaces using a modified Chien k–ϵ turbulence model. AIAA-96-0384.
Leonardi, S., Orlandi, P., Djenidi, L. & Antonia, R. A. 2003a Structure of turbulent channel flow with square bars on one wall. In Proc. Third Intl Symp. on Turbulence and Shear Flow Phenomena, vol. 1, pp. 123–128. Sendai, Japan.
Leonardi, S., Orlandi, P., Smalley, R. J., Djenidi, L. & Antonia, R. A. 2003b Direct numerical simulations of turbulent channel flow with transverse square bars on the wall. J. Fluid Mech. 491, 229238.
Ligrani, P. M. & Moffat, R. J. 1986 Structure of transitionally rough and fully rough turbulent boundary layers. J. Fluid Mech. 162, 6998.
Miyake, Y., Tsujimoto, K. & Nakaji, M. 2001 Direct numerical simulation of rough-wall heat transfer in a turbulent channel flow. Intl J. Heat Fluid Flow 22, 237244.
Moser, R. D., Kim, J. & Mansour, N. N. 1999 Direct numerical simulation of turbulent channel flow up to Re τ=590. Phys. Fluids 11 (4), 943945.
Nagano, Y., Hattori, H. & Houra, T. 2004 DNS of velocity and thermal fields in turbulent channel flow with transverse-rib roughness. Intl J. Heat Fluid Flow 25, 393403.
Nikuradse, J. 1933 Strömungsgesetze in rauhen Rohren. Forschungsheft Arb. Ing.-Wes. 361.
Novak, M. D., Warland, J. S., Orchansky, A. L., Ketler, R. & Green, S. 2000 Comparison between wind tunnel and field measurements of turbulent flow. Part I: Uniformly thinned forests. Boundary-Layer Met. 95, 457495.
Perry, A. E. & Joubert, P. N. 1963 Rough-wall boundary layers in adverse pressure gradients. J. Fluid Mech. 17, 193211.
Perry, A. E., Schofield, W. H. & Joubert, P. N. 1969 Rough wall turbulent boundary layers. J. Fluid Mech. 37, 383413.
Perry, A. E., Henbest, S. M. & Chong, M. S. 1986 A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165, 163199.
Poggi, D., Porporato, A., Ridolfi, L., Albertson, J. D. & Katul, G. G. 2004b The effect of vegetation density on canopy sub-layer turbulence. Boundary-Layer Met. 111, 565587.
Poggi, D., Katul, G. G. & Albertson, J. D. 2004b Momentum transfer and turbulent kinetic energy budgets within a dense model canopy. Boundary-Layer Met. 111, 589614.
Raupach, M. R. 1981 Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers. J. Fluid Mech. 108, 363382.
Raupach, M. R. & Shaw, R. H. 1982 Averaging procedures for flow within vegetation canopies. Boundary-Layer Met. 22, 7990.
Raupach, M. R., Antonia, R. A. & Rajagopalan, S. 1991 Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44, 125.
Raupach, M. R., Finnigan, J. J. & Brunet, Y. 1996 Coherent eddies and turbulence in vegetation canopies: the mixing layer analogy. Boundary-Layer Met. 78, 351382.
Rogers, S. E. & Kwak, D. 1990 Upwind differencing scheme for the time-accurate incompressible Navier–Stokes equations. AIAA J. 28, 253262.
Schlichting, H. 1979 Boundary-Layer Theory, 7th edn. McGraw–Hill.
Seo, J.-M. 2004 Closure modeling and numerical simulation for turbulent flows: wall roughness model, realizability and turbine blade heat transfer. PhD thesis, Stanford University.
Shafi, H. S. & Antonia, R. A. 1997 Small-scale characteristics of a turbulent boundary layer over a rough wall. J. Fluid Mech. 342, 263293.
Shah, K. B. & Ferziger, J. H. 1998 Large eddy simulations of flow past a cubic obstacle. PhD thesis, Stanford University.
Spalart, P. R. 1987 Hybrid RKW3 + Crank–Nicolson scheme. Internal Rep. NASA-Ames Research Center, Moffett Field, CA.
Spalart, P. R. & Allmaras, S. R. 1994 A one-equation turbulence model for aerodynamic flows. Rech. Aérosp. 1, 521.
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.
Wilson, N. R. & Shaw, R. H. 1977 A higher order closure model for canopy flow. J. Appl. Met. 16, 11981205.
Yang, K. & Ferziger, J. H. 1993 Large-eddy simulation of turbulent obstacle flow using a dynamic subgrid-scale model. AIAA J. 31, 14061413.
Zhuang, Y. & Wilson, J. D. 1994 Coherent motions in windbreak flow. Boundary-Layer Met. 70, 151169.
MathJax is a JavaScript display engine for mathematics. For more information see

Direct simulations of a rough-wall channel flow

  • TOMOAKI IKEDA (a1) and PAUL A. DURBIN (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed