Skip to main content Accessibility help

Direct simulation Monte Carlo computations and experiments on leading-edge separation in rarefied hypersonic flow

  • R. Prakash (a1), L. M. Le Page (a1), L. P. McQuellin (a1), S. L. Gai (a1) and S. O’Byrne (a1)...


A comprehensive study of the fundamental characteristics of leading-edge separation in rarefied hypersonic flows is undertaken and its salient features are elucidated. Separation of a boundary layer undergoing strong expansion is typical in many practical hypersonic applications such as base flows of re-entry vehicles and flows over deflected control surfaces. Boundary layer growth under such conditions is influenced by effects of rarefaction and thermal non-equilibrium, thereby differing significantly from the conventional no-slip Blasius type. A leading-edge separation configuration presents a fundamental case for studying the characteristics of such a flow separation but with minimal influence from a pre-existing boundary layer. In this work, direct simulation Monte Carlo computations have been performed to investigate flow separation and reattachment in a low-density hypersonic flow over such a configuration. Distinct features of leading-edge flow, limited boundary layer growth, separation, shear layer, flow structure in the recirculation region and reattachment are all explained in detail. The fully numerical shear layer profile after separation is compared against a semi-theoretical profile, which is obtained using the numerical separation profile as the initial condition on existing theoretical concepts of shear layer analysis based on continuum flow separation. Experimental studies have been carried out to determine the surface heat flux using thin-film gauges and computations showed good agreement with the experimental data. Flow visualisation experiments using the non-intrusive planar laser-induced fluorescence technique have been performed to image the fluorescence of nitric oxide, from which velocity and rotational temperature distributions of the separated flow region are determined.


Corresponding author

Email address for correspondence:


Hide All
Anderson, J. D. Jr 2006 Hypersonic and High-Temperature Gas Dynamics, 2nd edn. AIAA Education Series.
Babinsky, H. & Harvey, J. K. 2013 Shock Wave – Boundary Layer Interactions. Cambridge University Press.
Baum, E., King, H. H. & Deninson, M. R. 1964 Recent studies of the laminar base-flow region. AIAA J. 2 (9), 15271534.
Bird, G. A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press.
Bird, G. A. 2011 The DSMC method. CreateSpace Independent Publishing Platform.
Boyd, I. D., Chen, G. & Candler, G. V. 1995 Predicting failure of the continuum fluid equations in transitional hypersonic flows. Phys. Fluids 7 (1), 210219.
Bray, K. N. C. 1959 Atomic recombination in a hypersonic wind-tunnel nozzle. J. Fluid Mech. 6 (1), 132.
Chapman, D. R., Kuehn, D. M. & Larson, H. K.1958 Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition. NACA Tech. Rep. 1356.
Cheng, H. K., Hall, J. G., Golian, T. C. & Hertzberg, A. 1961 Boundary-layer displacement and leading-edge bluntness effects in high-temperature hypersonic flow. J. Aero. Sci. 28 (5), 353410.
Cohen, C. B. & Reshotko, E.1956 Similar solutions for the compressible laminar boundary layer with heat transfer and pressure gradient. NACA Tech. Rep. 1293.
Cook, W. J. & Felderman, E. J. 1966 Reduction of data from thin-film heat-transfer gages: a concise numerical technique. AIAA J. 4 (3), 561562.
Edney, B. E. 1968 Effects of shock impingement on the heat transfer around blunt bodies. AIAA J. 6 (1), 1521.
Eitelberg, G., McIntyre, T. J. & Beck, W. H. 1992 The high enthalpy shock tunnel in gottingen. In 28th Joint Propulsion Conference and Exhibit.
Gai, S. L. 1992 Free piston shock tunnels: developments and capabilities. Prog. Aerosp. Sci. 29 (1), 141.
Gai, S. L. 2010 Flow behind a step in high-enthalpy laminar hypersonic flow. AIAA J. 48 (7), 15631567.
Gray, J. D.1965 Laminar boundary-layer separation on flared bodies at supersonic and hypersonic speeds. Tech. Documentary Rep. 64-277.
Haas, B. L., Hash, D. B., Bird, G. A., Lumpkin, F. E. & Hassan, H. A. 1994 Rates of thermal relaxation in direct simulation Monte Carlo methods. Phys. Fluids 6 (6), 21912201.
Hayne, M. J., Mee, D. J., Morgan, R. G., Gai, S. L. & Mclntyre, T. J. 2003 Heat transfer and flow behind a step in high enthalpy superorbital flow. Aeronaut. J. 107 (1073), 435442.
Holden, M. 1971 Boundary-layer displacement and leading-edge bluntness effects on attached and separated laminar boundary layers in a compression corner. Part II. Experimental study. AIAA J. 9 (1), 8493.
Holden, M. 1978 A study of flow separation in regions of shock wave-boundary layer interaction in hypersonic flow. In 11th Fluid and Plasma Dynamics Conference, AIAA.
Hornung, H. A. N. S., Sturtevant, B., Belanger, J., Sanderson, S., Brouillette, M. & Jenkins, M. 1992 Performance data of the new free-piston shock tunnel T5 at GALCIT. In Shock Waves, pp. 603610. Springer.
Hruschka, R., O’Byrne, S. & Kleine, H. 2010 Two-component doppler-shift fluorescence velocimetry applied to a generic planetary entry probe model. Exp. Fluids 48 (6), 11091120.
Inger, G. R. & Moss, J. N. 2007 Comparison of Navier–Stokes and direct simulation Monte Carlo predictions with separation. AIAA J. 45 (8), 21022105.
Inger, G. R. 1977 On the curvature of compressible boundary layer flows near separation. Z. Angew. Math. Phys. 28 (6), 10271035.
Kaseman, T.2017 Optical studies of leading-edge separation in high-enthalpy, low-density hypersonic flows. PhD thesis, School of Engineering & Information Technology, UNSW Canberra.
Khraibut, A., Gai, S. L., Brown, L. M. & Neely, A. J. 2017 Laminar hypersonic leading edge separation a numerical study. J. Fluid Mech. 821, 624646.
Kinnear, K. & Lu, F. 1998 Design, calibration and testing of transient thin film heat transfer gauges. In 20th AIAA Advanced Measurement and Ground Testing Technology Conference, p. 2504. American Institute of Aeronautics and Astronautics.
Korolev, G. L., Gajjar, J. S. B. & Ruban, A. I. 2002 Once again on the supersonic flow separation near a corner. J. Fluid Mech. 463, 173199.
Kubota, T., Lees, L. & Lewis, J. E. 1968 Experimental investigation of supersonic laminar, two-dimensional boundary-layer separation in a compression corner with and without cooling. AIAA J. 6 (1), 714.
Leite, P. H. M. & Santos, W. F. N. 2014 Computational analysis of the flow field structure of a non-reacting hypersonic flow over forward-facing steps. J. Fluid Mech. 763, 460499.
Le Page, L. M. & O’Byrne, S. 2017 An adaptive sampling algorithm for doppler-shift fluorescence velocimetry in high-speed flows. J. Quant. Spectrosc. Radiat. Transfer 190, 6977.
Lu, F. K. & Marren, D. E. 2002 Advanced Hypersonic Test Facilities. American Institute of Aeronautics and Astronautics.
Mallinson, S. G.1994 Shock wave/boundary layer interaction at a compression corner in hypervelocity flows. PhD thesis, Department of Aerospace and Mechanical Engineering, UNSW-ADFA.
Mallinson, S. G., Gai, S. L. & Mudford, N. R. 1996 Leading-edge bluntness effects in high enthalpy, hypersonic compression corner flow. AIAA J. 34, 22842290.
Markelov, G. N., Kudryavtsev, A. N. & Ivanov, M. S. 2000 Continuum and kinetic simulation of laminar separated flow at hypersonic speeds. J. Spacecr. Rockets 37 (4), 499506.
McIntosh, M. K.1968 Computer program for the numerical calculation of frozen equilibrium conditions in shock tunnels. Technical Report.
Merzkirch, W., Page, R. H. & Fletcher, L. S. 1988 A survey of heat transfer in compressible separated and reattached flows. AIAA J. 26 (2), 144150.
Messiter, A. F., Hough, G. R. & Feo, A. 1973 Base pressure in laminar supersonic flow. J. Fluid Mech. 60 (3), 605624.
Millikan, R. C. & White, D. R. 1963 Systematics of vibrational relaxation. J. Chem. Phys. 39 (12), 32093213.
Moffat, H. K. 1964 Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18 (1), 118.
Moss, J. N., O’Byrne, S., Deepak, N. R. & Gai, S. L. 2012 Simulations of hypersonic, high-enthalpy separated flow over a ‘tick’ configuration. In 28th International Symposium on Rarefied Gas Dynamics, pp. 14531460. AIP Publishing.
Moss, J. N., O’Byrne, S. & Gai, S. L. 2014 Hypersonic separated flows about ‘tick’ configurations with sensitivity to model design. In AIP Conference Proceedings, pp. 162169. AIP Publishing.
Moss, J. N., Price, J. M. & Chun, C. H. 1991 Hypersonic rarefied flow about a compression corner – DSMC simulation and experiment. In 26th AIAA Thermophysics Conference.
Moss, J. N. & Bird, G. A. 2005 Direct simulation Monte Carlo simulations of hypersonic flows with shock interactions. AIAA J. 43 (12), 25652573.
NCI2017 National Computational Infrastructure Annual Report. Tech. Rep.
Needham, D. & Stollery, J. 1966 Boundary layer separation in hypersonic flow. In 4th Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics.
Neely, A. J., Stalker, R. J. & Paull, A. 1991 High enthalpy, hypervelocity flows of air and argon in an expansion tube. Aeronaut. J. 95 (946), 175186.
O’Byrne, S.2002 Hypersonic laminar boundary layers and near-wake flows. PhD thesis, Australian National University.
O’Byrne, S., Kaseman, T., Krishna, Y., Gai, S. L., Kleine, H. H. & Neely, A.2014 Leading-edge separation in thermal nonequilibrium hypersonic flow – final report for AOARD grant 134013. SEIT, UNSW-ADFA Grant Report.
Olivier, H., Vetter, M., Jessen, C. & Grönig, H. 1993 Measurements on models for hypersonic real gas conditions. In New Trends in Instrumentation for Hypersonic Research, pp. 471480. Springer.
Oswatitsch, K. 1957 Die Ablosungsbedingung vo Grenzschichten. pp. 357367. Springer.
Palma, P. C.1999 Laser-induced fluorescence imaging in free-piston shock tunnels. PhD thesis, The Australian National University.
Park, G.2010 Hypervelocity aerothermodynamics of blunt bodies including real gas effects. PhD thesis, School of Engineering & Information Technology, UNSW Canberra.
Park, G., Gai, S. L. & Neely, A. J. 2010a Aerothermodynamics behind a blunt body at superorbital speeds. AIAA J. 48 (8), 18041816.
Park, G., Gai, S. L. & Neely, A. J. 2010b Laminar near wake of a circular cylinder at hypersonic speeds. AIAA J. 48 (1), 236248.
Paull, A. & Stalker, R. J. 2001 Scramjet Testing in the T3 and T4 Hypersonic Impulse Facilities. American Institute of Aeronautics and Astronautics.
Plimpton, S. & Gallis, M. 2016 SPARTA Users Manual. Sandia National Laboratories.
Prakash, R., Gai, S. & O’Byrne, S.2015 Numerical study of hypersonic separated flow over an expansion-compression surface. AIAA Paper 2015-3528.
Prakash, R., Gai, S. & O’Byrne, S.2017 DSMC computations of separation over a tick model in hypersonic high enthalpy transitional flows. AIAA Paper 2017-1844.
Prakash, R., Gai, S. & O’Byrne, S. 2018 A direct simulation monte carlo study of hypersonic leading-edge separation with rarefaction effects. Phys. Fluids 30 (6), 063602.
Sanderson, R. J. 1969 Interpretation of pressure measurements behind the reflected shock in a rectangular shock tube. AIAA J. 7 (7), 13701372.
Schultz, D. L. & Jones, T. V.1973 Heat-transfer measurements in short-duration hypersonic facilities. AGARD Technical Report 165. Advisory Group for Aerospace Research and Development.
Simmons, J. M. 1995 Measurement techniques in high-enthalpy hypersonic facilities. Exp. Therm. Fluid Sci. 10 (4), 454469.
Skeel, R. D. & Berzins, M. 1990 A method for the spatial discretization of parabolic equations in one space variable. SIAM J. Sci. Stat. Comput. 11 (1), 132.
Stalker, R. J. 1967 A study of the free-piston shock tunnel. AIAA J. 5 (12), 21602165.
Takahashi, M., Ueda, S., Komuro, T., Sato, K., Tanno, H. & Itoh, K. 1999 Development of a new force measurement method for scramjet testing in a high enthalpy shock tunnel. In 9th International Space Planes and Hypersonic Systems and Technologies Conference, p. 4961. American Institute of Aeronautics and Astronautics.
Tumuklu, O., Levin, D. & Theofilis, V. 2017 On the temporal evolution in laminar separated boundary layer shock-interaction flows using DSMC. In 55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum. American Institute of Aeronautics and Astronautics.
Vardavas, I. M. 1984 Modelling reactive gas flows within shock tunnels. Austral. J. Phys. 37, 157177.
Vidal, R. J. 1956 Model Instrumentation Techniques for Heat Transfer and Force Measurements in a Hypersonic Shock Tunnel. Cornell Aeronautical Laboratory.
Wadhams, T. P., Mundy, E., MacLean, M. G. & Holden, M. S. 2008 Ground test studies of the hifire-1 transition experiment part 1: experimental results. J. Spacecr. Rockets 45 (6), 11341148.
Wieting, A. R. 1975 Empirical correlations for heat transfer and flow friction characteristics of rectangular offset-fin plate-fin heat exchangers. Trans. ASME J. Heat Transfer 97 (3), 488490.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Direct simulation Monte Carlo computations and experiments on leading-edge separation in rarefied hypersonic flow

  • R. Prakash (a1), L. M. Le Page (a1), L. P. McQuellin (a1), S. L. Gai (a1) and S. O’Byrne (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed