Skip to main content Accessibility help
×
Home

Direct numerical simulation of turbulence modulation by particles in compressible isotropic turbulence

  • Qi Dai (a1), Kun Luo (a1), Tai Jin (a1) and Jianren Fan (a1)

Abstract

In this paper, a systematic investigation of turbulence modulation by particles and its underlying physical mechanisms in decaying compressible isotropic turbulence is performed by using direct numerical simulations with the Eulerian–Lagrangian point-source approach. Particles interact with turbulence through two-way coupling and the initial turbulent Mach number is 1.2. Five simulations with different particle diameters (or initial Stokes numbers, $St_{0}$ ) are conducted while fixing both their volume fraction and particle densities. The underlying physical mechanisms responsible for turbulence modulation are analysed through investigating the particle motion in the different cases and the transport equations of turbulent kinetic energy, vorticity and dilatation, especially the two-way coupling terms. Our results show that microparticles ( $St_{0}\leqslant 0.5$ ) augment turbulent kinetic energy and the rotational motion of fluid, critical particles ( $St_{0}\approx 1.0$ ) enhance the rotational motion of fluid, and large particles ( $St_{0}\geqslant 5.0$ ) attenuate turbulent kinetic energy and the rotational motion of fluid. The compressibility of the turbulence field is suppressed for all the cases, and the suppression is more significant if the Stokes number of particles is close to 1. The modifications of turbulent kinetic energy, the rotational motion and the compressibility are all related with the particle inertia and distributions, and the suppression of the compressibility is attributed to the preferential concentration and the inertia of particles.

Copyright

Corresponding author

Email address for correspondence: zjulk@zju.edu.cn

References

Hide All
Abdelsamie, A. H. & Lee, C. 2012 Decaying versus stationary turbulence in particle-laden isotropic turbulence: turbulence modulation mechanism. Phys. Fluids 24, 15106.
Abdelsamie, A. H. & Lee, C. 2013 Decaying versus stationary turbulence in particle-laden isotropic turbulence: heavy particle statistics modifications. Phys. Fluids 25, 33303.
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.
Boivin, M., Simonin, O. & Squires, K. D. 1998 Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. J. Fluid Mech. 375, 235263.
Crowe, C. T., Sommerfeld, M. & Tsuji, Y. 1998 Multiphase Flows with Droplets and Particles. CRC Press.
Davis, S., Dittmann, T., Jacobs, G. B. & Don, W. S. 2011 High-fidelity Eulerian–Lagrangian methods for simulation of three dimensional, unsteady, high-speed, two-phase flows in high-speed combustors. In 9th Annual International Energy Conversion Engineering Conference, p. 5744.
Donzis, D. A. & Jagannathan, S. 2013 Fluctuations of thermodynamic variables in stationary compressible turbulence. J. Fluid Mech. 733, 221244.
Elghobashi, S. 1994 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52, 309329.
Ferrante, A. & Elghobashi, S. 2003 On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence. Phys. Fluids 15, 315329.
Goto, S. & Vassilicos, J. C. 2008 Sweep-stick mechanism of heavy particle clustering in fluid turbulence. Phys. Rev. Lett. 100, 054503.
He, Z.2004 Direct numerical simulation of non-isothermal gas-particle homogeneous isotropic turbulence. PhD thesis, Huazhong University of Science and Technology.
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Proceedings of Summer Program, pp. 914. Centre for Turbulence Research.
Jin, T., Luo, K., Dai, Q. & Fan, J. 2016a Simulations of cellular detonation interaction with turbulent flows. AIAA J 54, 419433.
Jin, T., Luo, K., Dai, Q. & Fan, J. 2016b Direct numerical simulation on supersonic turbulent reacting and non-reacting spray jet in heated coflow. Fuel 164, 267276.
Kennedy, C. A. & Carpenter, M. H. 1994 Several new numerical methods for compressible shear-layer simulations. Appl. Numer. Maths 14, 397433.
Libby, P. A. 1996 Introduction to Turbulence. Taylor & Francis.
Lucci, F., Ferrante, A. & Elghobashi, S. 2010 Modulation of isotropic turbulence by particles of Taylor length-scale size. J. Fluid Mech. 650, 555.
Martín, M. P., Taylor, E. M., Wu, M. & Weirs, V. G. 2006 A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. J. Comput. Phys. 220, 270289.
Mashayek, F. 1998 Droplet turbulence interactions in low-Mach-number homogeneous shear two-phase flows. J. Fluid Mech. 367, 163203.
Maxey, M. R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.
Parmar, M., Haselbacher, A. & Balachandar, S. 2012 Equation of motion for a sphere in non-uniform compressible flows. J. Fluid Mech. 699, 352375.
Passot, T. & Pouquet, A. 1987 Numerical simulation of compressible homogeneous flows in the turbulent regime. J. Fluid Mech. 181, 441466.
Picano, F., Battista, F., Troiani, G. & Casciola, C. M. 2011 Dynamics of PIV seeding particles in turbulent premixed flames. Exp. Fluids 50, 7588.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Samtaney, R., Pullin, D. I. & Kosović, B. 2001 Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Phys. Fluids 13, 1415.
Shu, C. W. & Osher, S. 1988 Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439471.
Sutherland, W. 1893 The viscosity of gases and molecular force. Phil. Mag. S5 36, 507531.
Wang, J., Shi, Y., Wang, L., Xiao, Z., He, X. & Chen, S. 2011 Effect of shocklets on the velocity gradients in highly compressible isotropic turbulence. Phys. Fluids 23, 125103.
Wang, J., Shi, Y., Wang, L., Xiao, Z., He, X. T. & Chen, S. 2012a Effect of compressibility on the small-scale structures in isotropic turbulence. J. Fluid Mech. 713, 588631.
Wang, J., Shi, Y., Wang, L. P., Xiao, Z. & He, X. T. 2012b Scaling and statistics in three-dimensional compressible turbulence. Phys. Rev. Lett. 108, 214505.
Wang, J., Yang, Y., Shi, Y., Xiao, Z., He, X. T. & Chen, S. 2013 Cascade of kinetic energy in three-dimensional compressible turbulence. Phys. Rev. Lett. 110, 214505.
Wang, J., Gotoh, T. & Watanabe, T. 2017a Shocklet statistics in compressible isotropic turbulence. Phys. Rev. Fluids 2, 023401.
Wang, J., Gotoh, T. & Watanabe, T. 2017b Spectra and statistics in compressible isotropic turbulence. Phys. Rev. Fluids 2, 013403.
Xia, Z., Shi, Y., Zhang, Q. & Chen, S. 2016 Modulation to compressible homogenous turbulence by heavy point particles. I. Effect of particles’ density. Phys. Fluids 28, 16103.
Yang, Y., Wang, J., Shi, Y., Xiao, Z., He, X. T. & Chen, S. 2014 Interactions between inertial particles and shocklets in compressible turbulent flow. Phys. Fluids 26, 91702.
Zhang, Q., Liu, H., Ma, Z. & Xiao, Z. 2016 Preferential concentration of heavy particles in compressible isotropic turbulence. Phys. Fluids 28, 55104.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Direct numerical simulation of turbulence modulation by particles in compressible isotropic turbulence

  • Qi Dai (a1), Kun Luo (a1), Tai Jin (a1) and Jianren Fan (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed