Skip to main content Accessibility help

Direct numerical simulation of shock wavy-wall interaction: analysis of cellular shock structures and flow patterns

  • G. Lodato (a1), L. Vervisch (a1) and P. Clavin (a2)


The reflection on a wavy wall of a planar shock propagating at Mach number 1.5 in air is simulated in a two-dimensional geometry by solving the fully compressible Navier–Stokes equations. A high-order spectral difference numerical discretization is used over an unstructured mesh composed of quadrilateral elements. The shock discontinuity is handled numerically through a specific treatment, which is limited in space to a small portion of the computational cell through which the shock is travelling. In the conditions under investigation, the reflection on the wavy wall leads to a weak and smooth deformation of the shock front without singularities just after reflection. Long-living triple points (Mach stems) are spontaneously formed on the reflected shock at a finite distance from the wavy wall. They then propagate on the front in both directions and collide regularly, forming a periodic cellular pattern quite similar to that of a cellular detonation. Transverse waves, issued from the triple points, are generated in the shocked gas. As a result of their mutual interaction, a complex and strongly unsteady flow is produced in the shocked gas. The topology of the instantaneous streamline patterns is characterized by short-lived critical points that appear intermittently. Due to the compressible character of the unsteady two-dimensional flow, the topology of critical points which can be observed is more diverse than would be expected for incompressible two-dimensional flows. Some of them take the form of short-lived sources or sinks. The mechanism of formation and the dynamics of the triple points, as well as the instantaneous streamline patterns, are analysed in the present paper. The results are useful for deciphering the cellular structure of unstable detonations.


Corresponding author

Email address for correspondence:


Hide All
Barter, G. E. & Darmofal, D. L. 2010 Shock capturing with PDE-based artificial viscosity for DGFEM: Part I. formulation. J. Comput. Phys. 229 (5), 18101827.
Ben-Dor, G. 2007 Shock Wave Reflection Phenomena. Springer.
Bhattacharjee, R. R., Lau-Chapdelaine, S. S. M., Maines, G., Maley, L. & Radulescu, M. I. 2013 Detonation re-initiation mechanism following the mach reflection of a quenched detonation. Proc. Combust. Inst. 34 (2), 18931901.
Bogey, C. & Bailly, C. 2004 A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys. 194 (1), 194214.
Bourlioux, A. & Majda, A. J. 1992 Theoretical and numerical structure for unstable two-dimensional detonations. Comput. Fluids 90 (3), 211229.
Briscoe, M. G. & Kovitz, A. A. 1968 Experimental and theoretical study of the stability of plane shock waves reflected normally from perturbed flat walls. J. Fluid Mech. 31 (03), 529546.
Chacin, J. M. & Cantwell, B. J. 2000 Dynamics of a low Reynolds number turbulent boundary layer. J. Fluid Mech. 404, 87115.
Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids A 2 (5), 765777.
Clavin, P. 2013 Nonlinear analysis of shock–vortex interaction: Mach stem formation. J. Fluid Mech. 721, 324339.
Clavin, P. & Denet, B. 2002 Diamond patterns in the cellular front of an overdriven detonation. Phys. Rev. Lett. 88 (4), 044502.
Clavin, P. & Williams, F. A. 2012 Analytical studies of the dynamics of gaseous detonations. Phil. Trans. R. Soc Lond. A 370 (1960), 597624.
Courant, R. & Friedrichs, K. O. 1948 Supersonic Flow and Shock Waves. Interscience Publishers.
Denet, B., Biamino, L., Lodato, G., Vervisch, L. & Clavin, P. 2015 Model equation for the dynamics of wrinkled shock waves. comparison with DNS and experiments. Combust. Sci. Technol. 187, 296323.
D’Yakov, S. P. 1954 The stabiliy of shockwaves: investigation of the problem of stability of shock waves in arbritary media. Zh. Eksp. Teor. Fiz. 27, 288.
Fickett, W. & Davis, W. C. 1979 Detonation. University of California Press.
Freeman, N. C. 1955 A theory of the stability of plane shock waves. Proc. R. Soc. Lond. A 228 (1174), 341362.
Gamezo, V. N., Desbordes, D. & Oran, E. S. 1999 Formation and evolution of two-dimensional cellular detonations. Comput. Fluids 116 (1), 154165.
Gelfand, B. E., Khomik, S. V., Bartenev, A. M., Medvedev, S. P., Grönig, H. & Olivier, H. 2000 Detonation and deflagration initiation at the focusing of shock waves in combustible gaseous mixture. Shock Waves 10 (3), 197204.
Gottlieb, S. & Shu, C. W. 1998 Total variation diminishing Runge–Kutta schemes. Maths Comput. 67 (221), 7385.
Guirguis, R., Oran, E. S. & Kailasanath, K. 1986 Numerical simulations of the cellular structure of detonations in liquid nitromethane – regularity of the cell structure. Comput. Fluids 65 (3), 339365.
Harten, A. 1983 High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49 (3), 357393.
Hesthaven, J. S. & Warburton, T. 2008 Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer Science+Business Media, LLC.
Izumi, K., Aso, S. & Nishida, M. 1994 Experimental and computational studies focusing processes of shock waves reflected from parabolic reflectors. Shock Waves 3 (3), 213222.
Jameson, A. 2010 A proof of the stability of the spectral difference method for all orders of accuracy. J. Sci. Comput. 45 (1), 348358.
Jameson, A., Vincent, P. E. & Castonguay, P. 2012 On the non-linear stability of flux reconstruction schemes. J. Sci. Comput. 50 (2), 434445.
Jourdan, G., Houas, L., Schwaederlé, L., Layes, G., Carrey, R. & Diaz, F. 2004 A new variable inclination shock tube for multiple investigations. Shock Waves 13 (6), 501504.
Kailasanath, K., Oran, E. S., Boris, J. P. & Young, T. R. 1985 Determination of detonation cell size and the role of transverse waves in two-dimensional detonations. Comput. Fluids 61 (3), 199209.
Kontorovich, V. M. 1957 Concerning the stability of shock waves. Zh. Eksp. Teor. Fiz. 33, 1525.
Kopriva, D. & Kolias, J. 1996 A conservative staggered-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys. 125 (1), 244261.
Kowalczyk, P., Płatkowski, T. & Waluś, W. 2000 Focusing of a shock wave in a rarefied gas: A numerical study. Shock Waves 10 (2), 7793.
Lapworth, K. C. 1959 An experimental investigation of the stability of plane shock waves. J. Fluid Mech. 6 (03), 469480.
Lighthill, M. J. 1949 The diffraction of blast. I. Proc. R. Soc. Lond. A 198 (1055), 454470.
Lighthill, M. J. 1950 The diffraction of blast. II. Proc. R. Soc. Lond. A 200 (1063), 554565.
Mahmoudi, Y. & Mazaheri, K. 2015 High resolution numerical simulation of triple point collision and origin of unburned gas pockets in turbulent detonations. Acta Astronaut. 115, 4051.
Majda, A. & Rosales, R. 1983 A theory for spontaneous mach stem formation in reacting shock fronts, i. the basic perturbation analysis. SIAM J. Appl. Maths 43 (6), 13101334.
Mazaheri, K., Mahmoudi, Y. & Radulescu, M. I. 2012 Diffusion and hydrodynamic instabilities in gaseous detonations. Combust. Flame 159 (6), 21382154.
Miller, G. H. & Ahrens, T. J. 1991 Shock-wave viscosity measurement. Rev. Mod. Phys. 63 (4), 919948.
Oran, E. S., Weber, J. W., Stefaniw, E. I., Lefebvre, M. H. & Anderson, J. D. 1998 A numerical study of a two-dimensional $\text{H}_{2}{-}\text{O}_{2}{-}\text{Ar}$ detonation using a detailed chemical reaction model. Comput. Fluids 113 (1), 147163.
Perry, A. E. & Chong, M. S. 1987 A description of eddying motions and flow patterns using critical-point concepts. Annu. Rev. Fluid Mech. 19 (1), 125155.
Persson, P.-O. 2013 Shock capturing for high-order discontinuous galerkin simulation of transient flow problems. AIAA Paper 2013‐3061, 19; 21st AIAA Computational Fluid Dynamics Conference, San Diego, CA, Jun. 24–27, 2013.
Persson, P.-O. & Peraire, J. 2006 Sub-cell shock capturing for discontinuous Galerkin methods. AIAA Paper 2006‐112, 113; 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 9–12, 2006.
Radulescu, M. I., Sharpe, G. J., Lee, J. H. S., Kiyanda, C. B., Higgins, A. J. & Hanson, R. K. 2005 The ignition mechanism in irregular structure gaseous detonations. Proc. Combust. Inst. 30 (2), 18591867.
Roe, P. L. 1981 Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357372.
Shadloo, M. S., Hadjadj, A. & Chaudhuri, A. 2014 On the onset of postshock flow instabilities over concave surfaces. Phys. Fluids 26 (7), 076101.
Skews, B. W. & Kleine, H. 2007 Flow features resulting from shock wave impact on a cylindrical cavity. J. Fluid Mech. 580, 481493.
Spiteri, R. J. & Ruuth, S. J. 2002 A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40 (2), 469491.
Sun, Y., Wang, Z. J. & Liu, Y. 2007 High-order multidomain spectral difference method for the Navier–Stokes equations on unstructured hexahedral grids. Commun. Comput. Phys. 2 (2), 310333.
Taieb, D., Ribert, G. & Hadjadj, A. 2010 Numerical simulations of shock focusing over concave surfaces. AIAA J. 48 (8), 17391747.
Taki, S. & Fujiwara, T. 1981 Numerical simulation of triple shock behavior of gaseous detonation. Symp. (International) Combust. 18 (1), 16711681; 18th Symposium (International) on Combustion.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed