Skip to main content Accessibility help
×
Home

Direct numerical simulation of oscillatory flow around a circular cylinder at low Keulegan–Carpenter number

  • HONGWEI AN (a1), LIANG CHENG (a1) and MING ZHAO (a1)

Abstract

The Honji instability is studied using direct numerical simulations of sinusoidal oscillatory flow around a circular cylinder. The three-dimensional Navier–Stokes equations are solved by a finite element method at a relatively small value of the Keulegan–Carpenter number KC. The generation and subsequent development of Honji vortices are discussed over a range of frequency parameters by means of flow visualization. It is found that the spacing between Honji vortices is only weakly dependent on the frequency of oscillation, but is strongly correlated to KC because it is the terms within the governing equation containing KC that dominate the three-dimensional features of the flow. An empirical relationship between KC and the spacing between neighbouring vortices is proposed. The three-dimensional steady streaming structure within the vortices is identified and it is found that at high frequencies the steady streaming is two-dimensional although the instantaneous flow structure is itself fully three-dimensional.

Copyright

Corresponding author

Email address for correspondence: anhw@civil.uwa.edu.au

References

Hide All
Barkley, D. & Henderson, R. D. 1996 Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215241.
Bearman, P. W., Downie, M. J., Graham, J. M. R. & Obasaju, E. D. 1985 Forces on cylinders in viscous oscillatory flow at low Keulegan–Carpenter numbers. J. Fluid Mech. 154, 337356.
Bearman, P. W. & Mackwood, P. R. 1992 Measurements of the hydrodynamic damping of oscillating cylinders. In Proceedings of 6th International Conference on the Behaviour of Offshore Structures (BOSS '92), pp. 405414. London.
Brooks, A. N. & Hughes, T. J. R. 1982 Streaming upwind/Petrov–Galerkin formulations for convection dominated flow with particular emphasis on the incompressible Navier–Stokes equations. Comput. Meth. Appl. Mech. Engng 32, 199259.
Choi, J. I., Oberoi, R. C., Edwards, J. R. & Rosati, J. A. 2007 An immersed boundary method for complex incompressible flows. J. Comput. Phys. 224, 757784.
Dütsch, H., Durst, F., Becker, S. & Lienhart, H. 1998 Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan–Carpenter numbers. J. Fluid Mech. 360, 249271.
Elston, J. R., Blackburn, H. M. & Sheridan, J. 2006 The primary and secondary instabilities of flow generated by an oscillating circular cylinder. J. Fluid Mech. 550, 359389.
Guilmineau, E. & Queutey, P. 2002 A numerical simulation of vortex shedding from an oscillating circular cylinder. J. Fluids Struct. 16, 773794.
Hall, P. 1984 On the stability of the unsteady boundary layer on a cylinder oscillating transversely in a viscous fluid. J. Fluid Mech. 146, 347367.
Holtsmark, J., Johnsen, I., Sikkeland, T. & Skavlem, S. 1954 Boundary layer flow near a cylindrical obstacle in an oscillating incompressible fluid. J. Acoust. Soc. Am. 26, 2639.
Honji, H. 1981 Streaked flow around an oscillating circular cylinder. J. Fluid Mech. 107, 507520.
Iliadis, G. & Anagnostopoulos, P. 1998 Viscous oscillatory flow around a circular cylinder at low Keulegan–Carpenter numbers and frequency parameters. Intl J. Numer. Meth. Fluids 26, 403442.
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6974.
Jester, W. & Kallinderis, Y. 2003 Numerical study of incompressible flow about fixed cylinder pairs. J. Fluids Struct. 17, 561577.
Justesen, P. 1991 A numerical study of oscillating flow around a circular cylinder. J. Fluid Mech. 222, 157196.
Kondo, N. 1994 Third-order upwind finite element solutions of high-Reynolds-number flows. Comput. Meth. Appl. Mech. Engng 112, 227251.
Lin, X. W., Bearman, P. W. & Graham, J. M. R. 1996 A numerical study of oscillatory flow about a circular cylinder for low values of beta parameter. J. Fluids Struct. 10, 501526.
Maull, D. J. & Milliner, M. G. 1978 Sinusoidal flow past a circular cylinder. Coastal Engng 2, 149168.
Morison, J. R., O'Brien, M. P., Johnson, J. W. & Schaaf, S. A. 1950 The force exerted by surface waves on piles. Petrol. Trans. 189, 149157.
Nehari, D., Armenio, V. & Ballio, F. 2004 Three-dimensional analysis of the unidirectional oscillatory flow around a circular cylinder at low Keulegan–Carpenter and β-number. J. Fluid Mech. 520, 157186.
Obasaju, E. D., Bearman, P. W. & Graham, J. M. R. 1988 A study of forces, circulation and vortex patterns around a circular cylinder in oscillating flow. J. Fluid Mech. 196, 467494.
Riley, N. 2001 Steady streaming. Annu. Rev. Fluid Mech. 33, 4365.
Saghafian, M., Stansby, P. K., Saidi, M. S. & Apsley, D. D. 2003 Simulation of turbulent flows around a circular cylinder using nonlinear eddy-viscosity modelling: steady and oscillatory flows. J. Fluids Struct. 17, 12131236.
Sarpkaya, T. 1977 In-line and transverse forces on cylinders in oscillatory flow at high Reynolds numbers. J. Ship Res. 21, 200216.
Sarpkaya, T. 1986 Force on a circular cylinder in viscous oscillatory flow at low Keulegan–Carpenter numbers. J. Fluid Mech. 165, 6171.
Sarpkaya, T. 2002 Experiments on the stability of sinusoidal flow over a circular cylinder. J. Fluid Mech. 457, 157180.
Sarpkaya, T. 2005 On the parameter β = Re/KC = D 2T. J. Fluids Struct. 21, 435440.
Sarpkaya, T. 2006 Structures of separation on a circular cylinder in periodic flow. J. Fluid Mech. 567, 281297.
Sarpkaya, T. & Butterworth, W. 1992 Separation points on a cylinder in oscillating flow. Trans. ASME J. Offshore Mech. Arctic Engng 114, 2835.
Scandura, P., Armenio, V. & Foti, E. 2009 Numerical investigation of the oscillatory flow around a circular cylinder close to a wall at moderate Keulegan–Carpenter and low Reynolds numbers. J. Fluid Mech. 627, 259290.
Stokes, G. G. 1851 On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc. 9, 8106.
Stuart, J. T. 1966 Double boundary layers in oscillatory viscous flow. J. Fluid Mech. 24, 673687.
Sumer, B. M. & Fredsøe, J. 1997 Hydrodynamics Around Cylindrical Structures. World Scientific.
Tatsuno, M. & Bearman, P. 1990 A visual study of the flow around an oscillating circular cylinder at low Keulegan–Carpenter numbers and low Stokes numbers. J. Fluid Mech. 211, 157182.
Uzunoglu, B., Tan, M. & Price, W. G. 2001 Low-Reynolds-number flow around an oscillating circular cylinder using a cell viscous boundary element method. Intl J. Numer. Meth. Engng 50, 23172338.
Wang, C. Y. 1968 On high-frequency oscillatory viscous flows. J. Fluid Mech. 32, 5568.
Williamson, C. H. K. 1985 Sinusoidal flow relative to circular cylinders. J. Fluid Mech. 155, 141174.
Wu, J. Z., Lu, X. Y. & Zhuang, L. X. 2007 Integral force acting on a body due to local flow structures. J. Fluid Mech. 576, 265286.
Zhang, J. & Dalton, C. 1999 The onset of three-dimensionality in an oscillatory flow past a fixed circular cylinder. Intl J. Numer. Meth. Fluids 30, 1942.
Zhao, M., Cheng, L. & Zhou, T. 2009 Direct numerical simulation of three-dimensional flow past a yawed circular cylinder of infinite length. J. Fluids Struct. 25, 831847.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed