Skip to main content Accessibility help
×
Home

Direct numerical simulation of conical shock wave–turbulent boundary layer interaction

  • Feng-Yuan Zuo (a1) (a2), Antonio Memmolo (a2), Guo-ping Huang (a1) and Sergio Pirozzoli (a2)

Abstract

Direct numerical simulation of the Navier–Stokes equations is carried out to investigate the interaction of a conical shock wave with a turbulent boundary layer developing over a flat plate at free-stream Mach number $M_{\infty }=2.05$ and Reynolds number $Re_{\unicode[STIX]{x1D703}}\approx 630$ , based on the upstream boundary layer momentum thickness. The shock is generated by a circular cone with half opening angle $\unicode[STIX]{x1D703}_{c}=25^{\circ }$ . As found in experiments, the wall pressure exhibits a distinctive N-wave signature, with a sharp peak right past the precursor shock generated at the cone apex, followed by an extended zone with favourable pressure gradient, and terminated by the trailing shock associated with recompression in the wake of the cone. The boundary layer behaviour is strongly affected by the imposed pressure gradient. Streaks are suppressed in adverse pressure gradient (APG) zones, but re-form rapidly in downstream favourable pressure gradient (FPG) zones. Three-dimensional mean flow separation is only observed in the first APG region associated with the formation of a horseshoe vortex, whereas the second APG region features an incipient detachment state, with scattered spots of instantaneous reversed flow. As found in canonical geometrically two-dimensional wedge-generated shock–boundary layer interactions, different amplification of the turbulent stress components is observed through the interacting shock system, with approach to an isotropic state in APG regions, and to a two-component anisotropic state in FPG. The general adequacy of the Boussinesq hypothesis is found to predict the spatial organization of the turbulent shear stresses, although different eddy viscosities should be used for each component, as in tensor eddy-viscosity models, or in full Reynolds stress closures.

Copyright

Corresponding author

Email addresses for correspondence: zuofy@nuaa.edu.cn, sergio.pirozzoli@uniroma1.it

References

Hide All
Adams, N. A. 2000 Direct simulation of the turbulent boundary layer along a compression ramp at M = 3 and Re 𝜃 = 1685. J. Fluid Mech. 420, 4783.10.1017/S0022112000001257
Aubard, G., Gloerfelt, X. & Robinet, J. C. 2013 Large-eddy simulation of broadband unsteadiness in a shock/boundary-layer interaction. AIAA J. 51 (10), 23952409.10.2514/1.J052249
Aubertine, C. D. & Eaton, J. K. 2005 Turbulence development in a non-equilibrium turbulent boundary layer with mild adverse pressure gradient. J. Fluid Mech. 532, 345364.10.1017/S0022112005004143
Babinsky, H. & Harvey, J. K. 2011 Shock Wave-Boundary-Layer Interactions. Cambridge University Press.10.1017/CBO9780511842757
Bernardini, M., Modesti, D. & Pirozzoli, S. 2016 On the suitability of the immersed boundary method for the simulation of high-Reynolds-number separated turbulent flows. Comput. Fluids 130, 8493.10.1016/j.compfluid.2016.02.018
Castillo, L. & George, W. K. 2001 Similarity analysis for turbulent boundary layer with pressure gradient: outer flow. AIAA J. 39 (1), 4147.10.2514/2.1300
Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids A 2 (5), 765777.10.1063/1.857730
Clauser, F. H. 1954 Turbulent boundary layers in adverse pressure gradients. J. Aero. Sci. 21 (2), 91108.
Dallmann, U. 1983 Topological structures of three-dimensional vortex flow separation. In 16th Fluid and Plasmadynamics Conference, p. 1735. American Institute of Aeronautics and Astronautics.
DeBonis, J. R., Oberkampf, W. L., Wolf, R. T., Orkwis, P. D., Turner, M. G., Babinsky, H. & Benek, J. A. 2012 Assessment of computational fluid dynamics and experimental data for shock boundary-layer interactions. AIAA J. 50 (4), 891903.10.2514/1.J051341
Délery, J. M. 2001 Robert Legendre and Henry Werlé: toward the elucidation of three-dimensional separation. Annu. Rev. Fluid Mech. 33, 129154.10.1146/annurev.fluid.33.1.129
Délery, J. M. & Dussauge, J. P. 2009 Some physical aspects of shock wave/boundary layer interactions. Shock Waves 19 (6), 453468.10.1007/s00193-009-0220-z
Dolling, D. S. 2001 Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J. 39 (8), 15171531.10.2514/2.1476
Dupont, P., Haddad, C. & Debieve, J. F. 2006 Space and time organization in a shock-induced separated boundary layer. J. Fluid Mech. 559, 255277.10.1017/S0022112006000267
Emory, M., Pecnik, R. & Iaccarino, G. 2011 Modeling structural uncertainties in Reynolds-averaged computations of shock/boundary layer interactions. In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2011-479, American Institute of Aeronautics and Astronautics.
Fadlun, E. A., Verzicco, R., Orlandi, P. & Mohd-Yusof, J. 2000 Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161 (1), 3560.10.1006/jcph.2000.6484
Gai, S. L. & Teh, S. L. 2000 Interaction between a conical shock wave and a plane turbulent boundary layer. AIAA J. 38 (5), 804811.10.2514/2.1060
Gerolymos, G. A., Sauret, E. & Vallet, I. 2004 Oblique-shock-wave/boundary-layer interaction using near-wall Reynolds-stress models. AIAA J. 42, 10891100.10.2514/1.1984
Hadjadj, A. 2012 Large-Eddy Simulation of Shock/Boundary-Layer Interaction. AIAA J. 50 (12), 29192927.10.2514/1.J051786
Hale, J.2015 Interaction between a conical shock wave and a plane compressible turbulent boundary layer at Mach 2.05. PhD thesis, UIUC.
Herrin, J. L. & Dutton, J. C. 1994 Supersonic base flow experiments in the near wake of a cylindrical afterbody. AIAA J. 32 (1), 7783.10.2514/3.11953
Kiya, M. & Sasaki, K. 1983 Structure of a turbulent separation bubble. J. Fluid Mech. 137, 83113.10.1017/S002211208300230X
Knight, D. D., Horstman, C., Bogdonoff, S. & Shapey, B. 1987 Structure of supersonic turbulent flow past a sharp fin. AIAA J. 25 (10), 13311337.10.2514/3.9787
Lumley, J. L. 1978 Computational modeling of turbulent flows. Adv. Appl. Mech. 18, 123176.10.1016/S0065-2156(08)70266-7
Migotsky, E. & Morkovin, M. V. 1951 Three-Dimensional Shock-Wave Reflections. J. Aero. Sci. 18 (7), 484489.
Morgan, B., Duraisamy, K., Nguyen, N., Kawai, S. & Lele, S. K. 2013 Flow physics and RANS modelling of oblique shock/turbulent boundary layer interaction. J. Fluid Mech. 729, 231284.10.1017/jfm.2013.301
O’Rourke, J. 1998 Computational geometry in C. Cambridge University Press.10.1017/CBO9780511804120
Panov, Y. A. 1968 Interaction of incident three-dimensional shock with a turbulent boundary layer. Fluid Dyn. 3 (3), 108110.
Pirozzoli, S. 2010 Generalized conservative approximations of split convective derivative operators. J. Comput. Phys. 229 (19), 71807190.10.1016/j.jcp.2010.06.006
Pirozzoli, S. 2011 Numerical methods for high-speed flows. Annu. Rev. Fluid Mech. 43, 163194.10.1146/annurev-fluid-122109-160718
Pirozzoli, S. & Bernardini, M. 2011a Direct numerical simulation database for impinging shock wave/turbulent boundary-layer interaction. AIAA J. 49 (6), 13071312.10.2514/1.J050901
Pirozzoli, S. & Bernardini, M. 2011b Turbulence in supersonic boundary layers at moderate Reynolds number. J. Fluid Mech. 688, 120168.10.1017/jfm.2011.368
Pirozzoli, S., Bernardini, M. & Grasso, F. 2010 Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation. J. Fluid Mech. 657, 361393.10.1017/S0022112010001710
Pirozzoli, S. & Grasso, F. 2006 Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M = 2. 25. Phys. Fluids 18 (6), 065113.10.1063/1.2216989
Poinsot, T. J. & Lele, S. K. 1992 Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101 (1), 104129.10.1016/0021-9991(92)90046-2
Simpson, R. L. 1989 Turbulent boundary-layer separation. Annu. Rev. Fluid Mech. 21 (1), 205232.10.1146/annurev.fl.21.010189.001225
Smits, A. J. & Dussauge, J. P. 2006 Turbulent Shear Layers in Supersonic Flow. Springer Science & Business Media.
Song, S. & Eaton, J. K. 2004 Reynolds number effects on a turbulent boundary layer with separation, reattachment, and recovery. Exp. Fluids 36 (2), 246258.10.1007/s00348-003-0696-8
Spalart, P. & Allmaras, S. 1992 A one-equation turbulence model for aerodynamic flows. In 30th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings. American Institute of Aeronautics and Astronautics.
Speziale, C. G. 1987 On nonlinear k-l and k-𝜖 models of turbulence. J. Fluid Mech. 178, 459475.10.1017/S0022112087001319
Sziroczak, D. & Smith, H. 2016 A review of design issues specific to hypersonic flight vehicles. Prog. Aerosp. Sci. 84, 128.10.1016/j.paerosci.2016.04.001
Tessicini, F., Iaccarino, G., Fatica, M., Wang, M. & Verzicco, R. 2002 Wall modeling for large-eddy simulation using an immersed boundary method. CTR Annu. Res. Briefs, Stanford, CA pp. 181187.
Touber, E. & Sandham, N. D. 2011 Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions. J. Fluid Mech. 671, 417465.10.1017/S0022112010005811
Wu, X. & Moin, P. 2009 Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech. 630, 541.10.1017/S0022112009006624
Xu, S. & Martin, M. P. 2004 Assessment of inflow boundary conditions for compressible turbulent boundary layers. Phys. Fluids 16 (7), 26232639.10.1063/1.1758218
Zagarola, M. V. & Smits, A. J. 1998 Mean-flow scaling of turbulent pipe flow. J. Fluid Mech. 373, 3379.10.1017/S0022112098002419
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.10.1017/S002211209900467X
Zuo, F. & Huang, G. 2018 Numerical investigation of bleeding control method on section-controllable wavecatcher intakes. Acta Astron. 151, 572584.10.1016/j.actaastro.2018.06.059
Zuo, F., Huang, G. & Xia, C. 2016 Investigation of internal-waverider-inlet flow pattern integrated with variable-geometry for TBCC. Aerosp. Sci. Technol. 59, 6977.10.1016/j.ast.2016.10.009
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed