Skip to main content Accessibility help

A direct comparison of pulsatile and non-pulsatile rough-wall turbulent pipe flow

  • T. O. Jelly (a1), R. C. Chin (a2), S. J. Illingworth (a1), J. P. Monty (a1), I. Marusic (a1) and A. Ooi (a1)...


Pulsatile rough-wall turbulent pipe flow is compared against its non-pulsatile counterpart using data obtained from direct numerical simulation. Results are presented at a mean friction Reynolds number of 540 for a set of three geometrically scaled roughness topographies at a single forcing condition, which, based on existing classifications, falls into the current-dominated very-high-frequency regime. By comparing the pulsatile data against an equivalent non-pulsatile dataset (Chan et al., J. Fluid Mech., vol. 854, 2018, pp. 5–33), the key differences (and similarities) between the forced and unforced configurations are identified. A major finding of this study is that the flow in the outer region retains its self-similar functional form under pulsatile rough-wall conditions, and, as a result, Townsend’s outer-layer similarity hypothesis holds for the roughness-forcing combinations considered here. On the other hand, the unsteady cases exhibit a rich array of flow physics in the region beneath the roughness crests not observed in the steady case. These differences are examined using a Moody chart, which encapsulates how the hydraulic properties of pulsatile rough-wall pipe flow differ from their non-pulsatile counterpart.


Corresponding author

Email address for correspondence:


Hide All
Bhaganagar, K. 2008 Direct numerical simulation of unsteady flow in channel with rough walls. Phys. Fluids 20 (10), 101508.
Chan, L., MacDonald, M., Chung, D., Hutchins, N. & Ooi, A. 2015 A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime. J. Fluid Mech. 771, 743777.
Chan, L., MacDonald, M., Chung, D., Hutchins, N. & Ooi, A. 2018 Secondary motion in turbulent pipe flow with three-dimensional roughness. J. Fluid Mech. 854, 533.
Cheng, Z., Jelly, T. O., Illingworth, S. J., Marusic, I. & Ooi, A. 2020 Forcing frequency effects on turbulence dynamics in pulsating pipe flow. Intl J. Heat Fluid Flow 82, 108538.
Chin, C., Monty, J. P. & Ooi, A. 2014 Reynolds number effects in DNS of pipe flow and comparison with channels and boundary layers. Intl J. Heat Fluid Flow 45, 3340.
Ciri, U., Bhui, R., Bailon-Cuba, J., Hayenga, H. N. & Leonardi, S. 2018 Dependence of leukocyte capture on instantaneous pulsatile flow. J. Biomech. 76, 8493.
Coleman, S. E., Nikora, V. I. & Schlicke, T. 2008 Spatially-averaged oscillatory flow over a rough bed. Acta Geophys. 56 (3), 698733.
Giménez-Curto, L. A. & Lera, M. A. C. 1996 Oscillating turbulent flow over very rough surfaces. J. Geophys. Res.: Oceans 101 (C9), 2074520758.
Grant, W. D. & Madsen, O. S. 1986 The continental-shelf bottom boundary layer. Annu. Rev. Fluid Mech. 18 (1), 265305.
Gray, W. G. & Lee, P. C. Y. 1977 On the theorems for local volume averaging of multiphase systems. Intl J. Multiphase Flow 3 (4), 333340.
Ham, F. & Iaccarino, G. 2004 Energy Conservation in Collocated Discretization Schemes on Unstructured Meshes, pp. 314. Center for Turbulence Research, Stanford University/NASA Ames.
Hama, F. R. 1954 Boundary-layer characteristics for smooth and rough surfaces. Trans. Soc. Nav. Archit. Mar. Engrs 62, 333358.
Kaptein, S. J., Duran-Matute, M., Roman, F., Armenio, V. & Clercx, H. 2019 Existence and properties of the logarithmic layer in oscillating flows. J. Hydraul Res. 57, 114.
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys. 59 (2), 308323.
Mahesh, K., Constantinescu, G. & Moin, P. 2004 A numerical method for large-eddy simulation in complex geometries. J. Comput. Phys. 197 (1), 215240.
Manna, M., Vacca, A. & Verzicco, R. 2012 Pulsating pipe flow with large-amplitude oscillations in the very high frequency regime. Part 1. Time-averaged analysis. J. Fluid Mech. 700, 246282.
Mao, Z.-X. & Hanratty, T. J. 1986 Studies of the wall shear stress in a turbulent pulsating pipe flow. J. Fluid Mech. 170, 545564.
Moody, L. F. 1944 Friction factors for pipe flow. Trans. ASME 66, 671684.
Napoli, E., Armenio, V. & De Marchis, M. 2008 The effect of the slope of irregularly distributed roughness elements on turbulent wall-bounded flows. J. Fluid Mech. 613, 385394.
Nayak, A. R., Li, C., Kiani, B. T. & Katz, J. 2015 On the wave and current interaction with a rippled seabed in the coastal ocean bottom boundary layer. J. Geophys. Res.: Oceans 120 (7), 45954624.
Nikuradse, J. 1933 Strömungsgesetze in rauhen Rohren. VDI Forschungsheft 361.
Papadopoulos, P. K. & Vouros, A. P. 2016 Pulsating turbulent pipe flow in the current dominated regime at high and very-high frequencies. Intl J. Heat Fluid Flow 58, 5467.
Scotti, A. & Piomelli, U. 2001 Numerical simulation of pulsating turbulent channel flow. Phys. Fluids 13 (5), 13671384.
Shockling, M. A., Allen, J. J. & Smits, A. J. 2006 Roughness effects in turbulent pipe flow. J. Fluid Mech. 564, 267285.
Shu, J. J., Burrows, C. R. & Edge, K. A. 1997 Pressure pulsations in reciprocating pump piping systems. Part 1. Modelling. Proc. Inst. Mech. Engrs I 211 (3), 229235.
Sleath, J. F. A. 1987 Turbulent oscillatory flow over rough beds. J. Fluid Mech. 182, 369409.
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.
Verschoof, R. A., te Nijenhuis, A. K., Huisman, S. G., Sun, C. & Lohse, D. 2018 Periodically driven Taylor–Couette turbulence. J. Fluid Mech. 846, 834845.
Weng, C., Boij, S. & Hanifi, A. 2016 Numerical and theoretical investigation of pulsatile turbulent channel flows. J. Fluid Mech. 792, 98133.
Womersley, J. R. 1955 Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127 (3), 553563.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

A direct comparison of pulsatile and non-pulsatile rough-wall turbulent pipe flow

  • T. O. Jelly (a1), R. C. Chin (a2), S. J. Illingworth (a1), J. P. Monty (a1), I. Marusic (a1) and A. Ooi (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.