Agarwal, A., Brandt, L. & Zaki, T. A.
2014
Linear and nonlinear evolution of a localized disturbance in polymeric channel flow. J. Fluid Mech.
760, 278–303.
Ardekani, M. N. & Brandt, L.
2019
Turbulence modulation in channel flow of finite-size spheroidal particles. J. Fluid Mech.
859, 887–901.
Asmolov, E. S.
1999
The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J. Fluid Mech.
381, 63–87.
Balachandar, S. & Eaton, J. K.
2010
Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech.
42 (1), 111–133.
Barbati, A. C., Desroches, J., Robisson, A. & McKinley, G. H.
2016
Complex fluids and hydraulic fracturing. Annu. Rev. Chem. Biomol. Engng
7, 415–453.
Biancofiore, L., Brandt, L. & Zaki, T. A.
2017
Streak instability in viscoelastic Couette flow. Phys. Rev. Fluids
2, 043304.
Breugem, W. P.
2012
A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. J. Comput. Phys.
231 (13), 4469–4498.
Capecelatro, J., Desjardins, O. & Fox, R. O.
2018
On the transition between turbulence regimes in particle-laden channel flows. J. Fluid Mech.
845, 499–519.
Caporaloni, M., Tampieri, F., Trombetti, F. & Vittori, O.
1975
Transfer of particles in nonisotropic air turbulence. J. Atmos. Sci.
32, 565–568.
Choueiri, G. H., Lopez, J. M. & Hof, B.
2018
Exceeding the asymptotic limit of polymer drag reduction. Phys. Rev. Lett.
120 (12), 124501.
Cisse, M., Homann, H. & Bec, J.
2013
Slipping motion of large neutrally buoyant particles in turbulence. J. Fluid Mech.
735, R1.
Costa, P., Picano, F., Brandt, L. & Breugem, W. P.
2016
Universal scaling laws for dense particle suspensions in turbulent wall-bounded flows. Phys. Rev. Lett.
117 (13), 1–5.
Costa, P., Picano, F., Brandt, L. & Breugem, W. P.
2018
Effects of the finite particle size in turbulent wall-bounded flows of dense suspensions. J. Fluid Mech.
843, 450–478.
Dallas, V., Vassilicos, J. C. & Hewitt, G. F.
2010
Strong polymer-turbulence interactions in viscoelastic turbulent channel flow. Phys. Rev. E
82 (6), 1–19.
D’Avino, G., Greco, F. & Maffettone, P. L.
2017
Particle migration due to viscoelasticity of the suspending liquid and its relevance in microfluidic devices. Annu. Rev. Fluid Mech.
49 (1), 341–360.
D’Avino, G., Hulsen, M. A. & Maffettone, P. L.
2013
Dynamics of pairs and triplets of particles in a viscoelastic fluid flowing in a cylindrical channel. Comput. Fluids
86, 45–55.
D’Avino, G., Hulsen, M. A., Snijkers, F., Vermant, J., Greco, F. & Maffettone, P. L.
2008
Rotation of a sphere in a viscoelastic liquid subjected to shear flow. Part I. Simulation results. J. Rheol.
52 (6), 1331–1346.
De Lillo, F., Boffetta, G. & Musacchio, S.
2012
Control of particle clustering in turbulence by polymer additives. Phys. Rev. E
85 (3), 1–6.
Doan, Q. T., Doan, L. T., Farouq Ali, S. M. & Oguztoreli, M.
1998
Sand deposition inside a horizontal well – a simulation approach. In Annual Technical Meeting of the Petroleum Society of Canada, vol. 39, p. 13. Petroleum Society of Canada.
Dubief, Y., Terrapon, V. E., White, C. M., Shaqfeh, E. S. G., Moin, P. & Lele, S. K.
2005
New answers on the interaction between polymers and vortices in turbulent flows. Flow Turbul. Combust.
74 (4), 311–329.
Dubief, Y., White, C. M., Terrapon, V. E., Shaqfeh, E. S. G., Moin, P. & Lele, S. K.
2004
On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows. J. Fluid Mech.
514, 271–280.
Einarsson, J., Yang, M. & Shaqfeh, E. S. G.
2018
Einstein viscosity with fluid elasticity. Phys. Rev. Fluids
3 (1), 013301.
Ferrante, A. & Elghobashi, S.
2003
On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence. Phys. Fluids
15 (2), 315–329.
Fornari, W., Formenti, A., Picano, F. & Brandt, L.
2016
The effect of particle density in turbulent channel flow laden with finite size particles in semi-dilute conditions. Phys. Fluids
28 (3).
Frank, X. & Li, H. Z.
2006
Negative wake behind a sphere rising in viscoelastic fluids: a lattice Boltzmann investigation. Phys. Rev. E
74 (5), 1–9.
Glowinski, R., Pan, T. W., Hesla, T. I., Joseph, D. D. & Périaux, J.
2001
A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys.
169 (2), 363–426.
Goyal, N. & Derksen, J. J.
2012
Direct simulations of spherical particles sedimenting in viscoelastic fluids. J. Non-Newtonian Fluid Mech.
183–184, 1–13.
Greco, F., D’Avino, G. & Maffettone, P. L.
2007
Rheology of a dilute suspension of rigid spheres in a second order fluid. J. Non-Newtonian Fluid Mech.
147 (1–2), 1–10.
Hameduddin, I., Gayme, D. F. & Zaki, T. A.
2019
Perturbative expansions of the conformation tensor in viscoelastic flows. J. Fluid Mech.
858, 377–406.
Hameduddin, I., Meneveau, C., Zaki, T. A. & Gayme, D. F.
2018
Geometric decomposition of the conformation tensor in viscoelastic turbulence. J. Fluid Mech.
842, 395–427.
Hameduddin, I. & Zaki, T. A.
2019
The mean conformation tensor in viscoelastic turbulence. J. Fluid Mech.
865, 363–380.
Hetsroni, G. & Rozenblit, R.
1994
Heat transfer to a liquid–solid mixture in a flume. Intl J. Multiphase Flow
20 (4), 671–689.
Huang, P. Y., Feng, J., Hu, H. H. & Joseph, D. D.
1997
Direct simulation of the motion of solid particles in Couette and Poiseuille flows of viscoelastic fluids. J. Fluid Mech.
343, 73–94.
Kaftori, D., Hetsroni, G. & Banerjee, S.
1994
Funnel-shaped vortical structures in wall turbulence. Phys. Fluids
6 (9), 3035–3050.
Karnis, A. & Mason, S. G.
1966
Particle motions in sheared suspensions. XIX. Viscoelastic media. Trans. Soc. Rheol.
10 (2), 571–592.
Kemiha, M., Frank, X., Poncin, S. & Li, H. Z.
2006
Origin of the negative wake behind a bubble rising in non-Newtonian fluids. Chem. Engng Sci.
61 (12), 4041–4047.
Kidanemariam, A. G., Chan-Braun, C., Doychev, T. & Uhlmann, M.
2013
Direct numerical simulation of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction. New J. Phys.
15, 025031.
Kim, K., Adrian, R. J., Balachandar, S. & Sureshkumar, R.
2008
Dynamics of hairpin vortices and polymer-induced turbulent drag reduction. Phys. Rev. Lett.
100, 134504.
Kim, K. & Sureshkumar, R.
2013
Spatiotemporal evolution of hairpin eddies, Reynolds stress, and polymer torque in polymer drag-reduced turbulent channel flows. Phys. Rev. E
87, 063002.
Lashgari, I., Picano, F., Breugem, W. P. & Brandt, L.
2016
Channel flow of rigid sphere suspensions: particle dynamics in the inertial regime. Intl J. Multiphase Flow
78, 12–24.
Lee, J., Jung, S. Y., Sung, H. J. & Zaki, T. A.
2013
Effect of wall heating on turbulent boundary layers with temperature-dependent viscosity. J. Fluid Mech.
726, 196–225.
Lee, S. J. & Zaki, T. A.
2017
Simulations of natural transition in viscoelastic channel flow. J. Fluid Mech.
820, 232–262.
Li, G., McKinley, G. H. & Ardekani, A. M.
2015
Dynamics of particle migration in channel flow of viscoelastic fluids. J. Fluid Mech.
785, 486–505.
Li, G. J., Karimi, A. & Ardekani, A. M.
2014
Effect of solid boundaries on swimming dynamics of microorganisms in a viscoelastic fluid. Rheol. Acta
53 (12), 911–926.
Lim, E. J., Ober, T. J., Edd, J. F., Desai, S. P., Neal, D., Bong, K. W., Doyle, P. S., McKinley, G. H. & Toner, M.
2014
Inertio-elastic focusing of bioparticles in microchannels at high throughput. Nat. Commun.
5, 4120.
Loisel, V., Abbas, M., Masbernat, O. & Climent, E.
2013
The effect of neutrally buoyant finite-size particles on channel flows in the laminar-turbulent transition regime. Phys. Fluids
25 (12), 123304.
Lucci, F., Ferrante, A. & Elghobashi, S.
2011
Is Stokes number an appropriate indicator for turbulence modulation by particles of Taylor-length-scale size?
Phys. Fluids
23 (2), 025101.
Lumley, J. L.
1969
Drag reduction by additives. Annu. Rev. Fluid Mech.
1 (1), 367–384.
Marchioli, C. & Soldati, A.
2002
Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech.
468, 283–315.
Matas, J. P., Morris, J. F. & Guazzelli, E.
2004
Inertial migration of rigid spherical particles in Poiseuille flow. J. Fluid Mech.
515, 171–195.
Morris, J. F.
2009
A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow. Rheol. Acta
48 (8), 909–923.
Naso, A. & Prosperetti, A.
2010
The interaction between a solid particle and a turbulent flow. New J. Phys.
12, 033040.
Nicolaou, L., Jung, S. Y. & Zaki, T. A.
2015
A robust direct-forcing immersed boundary method with enhanced stability for moving body problems in curvilinear coordinates. Comput. Fluids
119, 101–114.
Nowbahar, A., Sardina, G., Picano, F. & Brandt, L.
2013
Turbophoresis attenuation in a turbulent channel flow with polymer additives. J. Fluid Mech.
732, 706–719.
Page, J. & Zaki, T. A.
2014
Streak evolution in viscoelastic Couette flow. J. Fluid Mech.
742, 520–521.
Page, J. & Zaki, T. A.
2015
The dynamics of spanwise vorticity perturbations in homogeneous viscoelastic shear flow. J. Fluid Mech.
777, 327–363.
Pan, Y. & Banerjee, S.
1996
Numerical simulation of particle interactions with wall turbulence. Phys. Fluids
8 (10), 2733–2755.
Pan, Y. & Banerjee, S.
1997
Numerical investigation of the effects of large particles on wall-turbulence. Phys. Fluids
9 (12), 3786–3807.
Picano, F., Breugem, W. P. & Brandt, L.
2015
Turbulent channel flow of dense suspensions of neutrally buoyant spheres. J. Fluid Mech.
764, 463–487.
Pope, S. B.
2000
Turbulent Flows, vol. 12. Cambridge University Press.
Reade, W. C. & Collins, L. R.
2000
Effect of preferential concentration on turbulent collision rates. Phys. Fluids
12 (10), 2530–2540.
Rosenfeld, M., Kwak, D. & Vinokur, M.
1991
A fractional step solution method for the unsteady incompressible Navier–Stokes equations in generalized coordinate systems. J. Comput. Phys.
94 (1), 102–137.
Scirocco, R., Vermant, J. & Mewis, J.
2005
Shear thickening in filled Boger fluids. J. Rheol.
49 (2), 551–567.
Segre, G. & Silberberg, A.
1961
Radial particle displacements in Poiseuille flow of suspensions. Nature
189 (4760), 209–210.
Shao, X., Wu, T. & Yu, Z.
2012
Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number. J. Fluid Mech.
693, 319–344.
Shaw, R.
2003
Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech.
35, 183–227.
Silberman, E.
1983
The effect of drag-reducing additives on fluid flows and their industrial applications part 1: basic aspects. J. Hydraul Res.
21 (1), 72–73.
Snijkers, F., D’Avino, G., Maffettone, P. L., Greco, F., Hulsen, M. A. & Vermant, J.
2011
Effect of viscoelasticity on the rotation of a sphere in shear flow. J. Non-Newtonian Fluid Mech.
166 (7–8), 363–372.
Tamano, S., Graham, M. D. & Morinishi, Y.
2011
Streamwise variation of turbulent dynamics in boundary layer flow of drag-reducing fluid. J. Fluid Mech.
686 (10), 352–377.
Toms, B. A.
1948
Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In Proceedings of the 1st International Congress on Rheology, pp. 135–141. North-Holland.
Uhlmann, M.
2005
An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys.
209 (2), 448–476.
Uhlmann, M. & Doychev, T.
2014
Sedimentation of a dilute suspension of rigid spheres at intermediate Galileo numbers: the effect of clustering upon the particle motion. J. Fluid Mech.
752 (2), 310–348.
Vaithianathan, T., Robert, A., Brasseur, J. G. & Collins, L. R.
2006
An improved algorithm for simulating three-dimensional, viscoelastic turbulence. J. Non-Newtonian Fluid Mech.
140 (1-3), 3–22.
Virk, P. S., Mickley, H. S. & Smith, K. A.
1970
The ultimate asymptote and mean flow structure in Toms’ phenomenon. Trans. ASME J. Appl. Mech.
2 (37), 488–493.
Wang, G., Abbas, M. & Climent, E.
2018
Modulation of the regeneration cycle by neutrally buoyant finite-size particles. J. Fluid Mech.
852, 257–282.
Wang, S. N., Shekar, A. & Graham, M. D.
2017
Spatiotemporal dynamics of viscoelastic turbulence in transitional channel flow. J. Non-Newtonian Fluid Mech.
244, 104–122.
White, C. M., Dubief, Y. & Klewicki, J.
2018
Properties of the mean momentum balance in polymer drag-reduced channel flow. J. Fluid Mech.
834, 409–433.
White, C. M. & Mungal, M. G.
2008
Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech.
40 (1), 235–256.
Xi, L. & Graham, M. D.
2010
Active and hibernating turbulence in minimal channel flow of newtonian and polymeric fluids. Phys. Rev. Lett.
104, 218–301.
Xi, L. & Graham, M. D.
2012
Intermittent dynamics of turbulence hibernation in Newtonian and viscoelastic minimal channel flows. J. Fluid Mech.
693, 433–472.
Yeo, K. & Maxey, M. R.
2011
Numerical simulations of concentrated suspensions of monodisperse particles in a Poiseuille flow. J. Fluid Mech.
682, 491–518.
Yu, Z., Lin, Z., Shao, X. & Wang, L. P.
2017
Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles. Phys. Rev. E
96 (3), 1–15.
Zade, S., Lundell, F. & Brandt, L.
2019
Turbulence modulation by finite-size spherical particles in Newtonian and viscoelastic fluids. Intl J. Multiphase Flow
112, 116–129.
Zenit, R. & Feng, J. J.
2018
Hydrodynamic interactions among bubbles, drops, and particles in non-Newtonian liquids. Annu. Rev. Fluid Mech.
50 (1), 505–534.
Zhang, Q. & Prosperetti, A.
2010
Physics-based analysis of the hydrodynamic stress in a fluid-particle system. Phys. Fluids
22 (3), 6–17.