Skip to main content Accessibility help

Dilute suspension of neutrally buoyant particles in viscoelastic turbulent channel flow

  • Amir Esteghamatian (a1) and Tamer A. Zaki (a1)


Direct numerical simulations of viscoelastic turbulent channel flow laden with neutrally buoyant spherical particles are performed. Two FENE-P viscoelastic and one Newtonian fluid are examined, and for each the particle-laden configuration is contrasted to a reference condition without seeding. The size of the particles is larger than the dissipation length scale, and their presence enhances drag in a manner that is intrinsically different in the viscoelastic and Newtonian flows. While the particles effectively suppress the turbulence activity, they significantly enhance the polymer stresses. The polymer chains are markedly stretched in the vicinity of the particles, altering the correlation between the turbulence and polymer work that is commonly observed in single-phase viscoelastic turbulence. At the lower elasticity, the particles enhance the cycle of hibernating and active turbulence and, in turn, their migration and volume-fraction profiles are qualitatively altered by the intermittency of the turbulence. Particle–fluid momentum transfer is investigated by estimating the local fluid field on a trimmed spherical shell around the individual particles. And by comparing the particle microstructures, a lower probability of particle alignment in the streamwise direction is observed in the viscoelastic configuration. This effect is attributed to a qualitative difference in the conditionally averaged velocity fields in the vicinity of the particles in the Newtonian and viscoelastic flows.


Corresponding author

Email address for correspondence:


Hide All
Agarwal, A., Brandt, L. & Zaki, T. A. 2014 Linear and nonlinear evolution of a localized disturbance in polymeric channel flow. J. Fluid Mech. 760, 278303.10.1017/jfm.2014.586
Ardekani, M. N. & Brandt, L. 2019 Turbulence modulation in channel flow of finite-size spheroidal particles. J. Fluid Mech. 859, 887901.10.1017/jfm.2018.854
Asmolov, E. S. 1999 The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J. Fluid Mech. 381, 6387.10.1017/S0022112098003474
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42 (1), 111133.10.1146/annurev.fluid.010908.165243
Barbati, A. C., Desroches, J., Robisson, A. & McKinley, G. H. 2016 Complex fluids and hydraulic fracturing. Annu. Rev. Chem. Biomol. Engng 7, 415453.10.1146/annurev-chembioeng-080615-033630
Biancofiore, L., Brandt, L. & Zaki, T. A. 2017 Streak instability in viscoelastic Couette flow. Phys. Rev. Fluids 2, 043304.10.1103/PhysRevFluids.2.043304
Breugem, W. P. 2012 A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. J. Comput. Phys. 231 (13), 44694498.10.1016/
Capecelatro, J., Desjardins, O. & Fox, R. O. 2018 On the transition between turbulence regimes in particle-laden channel flows. J. Fluid Mech. 845, 499519.10.1017/jfm.2018.259
Caporaloni, M., Tampieri, F., Trombetti, F. & Vittori, O. 1975 Transfer of particles in nonisotropic air turbulence. J. Atmos. Sci. 32, 565568.10.1175/1520-0469(1975)032<0565:TOPINA>2.0.CO;2
Choueiri, G. H., Lopez, J. M. & Hof, B. 2018 Exceeding the asymptotic limit of polymer drag reduction. Phys. Rev. Lett. 120 (12), 124501.10.1103/PhysRevLett.120.124501
Cisse, M., Homann, H. & Bec, J. 2013 Slipping motion of large neutrally buoyant particles in turbulence. J. Fluid Mech. 735, R1.10.1017/jfm.2013.490
Costa, P., Picano, F., Brandt, L. & Breugem, W. P. 2016 Universal scaling laws for dense particle suspensions in turbulent wall-bounded flows. Phys. Rev. Lett. 117 (13), 15.10.1103/PhysRevLett.117.134501
Costa, P., Picano, F., Brandt, L. & Breugem, W. P. 2018 Effects of the finite particle size in turbulent wall-bounded flows of dense suspensions. J. Fluid Mech. 843, 450478.10.1017/jfm.2018.117
Dallas, V., Vassilicos, J. C. & Hewitt, G. F. 2010 Strong polymer-turbulence interactions in viscoelastic turbulent channel flow. Phys. Rev. E 82 (6), 119.10.1103/PhysRevE.82.066303
D’Avino, G., Greco, F. & Maffettone, P. L. 2017 Particle migration due to viscoelasticity of the suspending liquid and its relevance in microfluidic devices. Annu. Rev. Fluid Mech. 49 (1), 341360.10.1146/annurev-fluid-010816-060150
D’Avino, G., Hulsen, M. A. & Maffettone, P. L. 2013 Dynamics of pairs and triplets of particles in a viscoelastic fluid flowing in a cylindrical channel. Comput. Fluids 86, 4555.10.1016/j.compfluid.2013.06.030
D’Avino, G., Hulsen, M. A., Snijkers, F., Vermant, J., Greco, F. & Maffettone, P. L. 2008 Rotation of a sphere in a viscoelastic liquid subjected to shear flow. Part I. Simulation results. J. Rheol. 52 (6), 13311346.10.1122/1.2998219
De Lillo, F., Boffetta, G. & Musacchio, S. 2012 Control of particle clustering in turbulence by polymer additives. Phys. Rev. E 85 (3), 16.10.1103/PhysRevE.85.036308
Doan, Q. T., Doan, L. T., Farouq Ali, S. M. & Oguztoreli, M. 1998 Sand deposition inside a horizontal well – a simulation approach. In Annual Technical Meeting of the Petroleum Society of Canada, vol. 39, p. 13. Petroleum Society of Canada.
Dubief, Y., Terrapon, V. E., White, C. M., Shaqfeh, E. S. G., Moin, P. & Lele, S. K. 2005 New answers on the interaction between polymers and vortices in turbulent flows. Flow Turbul. Combust. 74 (4), 311329.10.1007/s10494-005-9002-6
Dubief, Y., White, C. M., Terrapon, V. E., Shaqfeh, E. S. G., Moin, P. & Lele, S. K. 2004 On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows. J. Fluid Mech. 514, 271280.10.1017/S0022112004000291
Einarsson, J., Yang, M. & Shaqfeh, E. S. G. 2018 Einstein viscosity with fluid elasticity. Phys. Rev. Fluids 3 (1), 013301.10.1103/PhysRevFluids.3.013301
Ferrante, A. & Elghobashi, S. 2003 On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence. Phys. Fluids 15 (2), 315329.10.1063/1.1532731
Fornari, W., Formenti, A., Picano, F. & Brandt, L. 2016 The effect of particle density in turbulent channel flow laden with finite size particles in semi-dilute conditions. Phys. Fluids 28 (3).10.1063/1.4942518
Frank, X. & Li, H. Z. 2006 Negative wake behind a sphere rising in viscoelastic fluids: a lattice Boltzmann investigation. Phys. Rev. E 74 (5), 19.10.1103/PhysRevE.74.056307
Glowinski, R., Pan, T. W., Hesla, T. I., Joseph, D. D. & Périaux, J. 2001 A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169 (2), 363426.10.1006/jcph.2000.6542
Goyal, N. & Derksen, J. J. 2012 Direct simulations of spherical particles sedimenting in viscoelastic fluids. J. Non-Newtonian Fluid Mech. 183–184, 113.10.1016/j.jnnfm.2012.07.006
Greco, F., D’Avino, G. & Maffettone, P. L. 2007 Rheology of a dilute suspension of rigid spheres in a second order fluid. J. Non-Newtonian Fluid Mech. 147 (1–2), 110.10.1016/j.jnnfm.2007.06.002
Hameduddin, I., Gayme, D. F. & Zaki, T. A. 2019 Perturbative expansions of the conformation tensor in viscoelastic flows. J. Fluid Mech. 858, 377406.10.1017/jfm.2018.777
Hameduddin, I., Meneveau, C., Zaki, T. A. & Gayme, D. F. 2018 Geometric decomposition of the conformation tensor in viscoelastic turbulence. J. Fluid Mech. 842, 395427.10.1017/jfm.2018.118
Hameduddin, I. & Zaki, T. A. 2019 The mean conformation tensor in viscoelastic turbulence. J. Fluid Mech. 865, 363380.10.1017/jfm.2019.46
Hetsroni, G. & Rozenblit, R. 1994 Heat transfer to a liquid–solid mixture in a flume. Intl J. Multiphase Flow 20 (4), 671689.10.1016/0301-9322(94)90038-8
Huang, P. Y., Feng, J., Hu, H. H. & Joseph, D. D. 1997 Direct simulation of the motion of solid particles in Couette and Poiseuille flows of viscoelastic fluids. J. Fluid Mech. 343, 7394.10.1017/S0022112097005764
Kaftori, D., Hetsroni, G. & Banerjee, S. 1994 Funnel-shaped vortical structures in wall turbulence. Phys. Fluids 6 (9), 30353050.10.1063/1.868129
Karnis, A. & Mason, S. G. 1966 Particle motions in sheared suspensions. XIX. Viscoelastic media. Trans. Soc. Rheol. 10 (2), 571592.10.1122/1.549066
Kemiha, M., Frank, X., Poncin, S. & Li, H. Z. 2006 Origin of the negative wake behind a bubble rising in non-Newtonian fluids. Chem. Engng Sci. 61 (12), 40414047.10.1016/j.ces.2006.01.051
Kidanemariam, A. G., Chan-Braun, C., Doychev, T. & Uhlmann, M. 2013 Direct numerical simulation of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction. New J. Phys. 15, 025031.
Kim, K., Adrian, R. J., Balachandar, S. & Sureshkumar, R. 2008 Dynamics of hairpin vortices and polymer-induced turbulent drag reduction. Phys. Rev. Lett. 100, 134504.10.1103/PhysRevLett.100.134504
Kim, K. & Sureshkumar, R. 2013 Spatiotemporal evolution of hairpin eddies, Reynolds stress, and polymer torque in polymer drag-reduced turbulent channel flows. Phys. Rev. E 87, 063002.
Lashgari, I., Picano, F., Breugem, W. P. & Brandt, L. 2016 Channel flow of rigid sphere suspensions: particle dynamics in the inertial regime. Intl J. Multiphase Flow 78, 1224.10.1016/j.ijmultiphaseflow.2015.09.008
Lee, J., Jung, S. Y., Sung, H. J. & Zaki, T. A. 2013 Effect of wall heating on turbulent boundary layers with temperature-dependent viscosity. J. Fluid Mech. 726, 196225.10.1017/jfm.2013.211
Lee, S. J. & Zaki, T. A. 2017 Simulations of natural transition in viscoelastic channel flow. J. Fluid Mech. 820, 232262.10.1017/jfm.2017.198
Li, G., McKinley, G. H. & Ardekani, A. M. 2015 Dynamics of particle migration in channel flow of viscoelastic fluids. J. Fluid Mech. 785, 486505.10.1017/jfm.2015.619
Li, G. J., Karimi, A. & Ardekani, A. M. 2014 Effect of solid boundaries on swimming dynamics of microorganisms in a viscoelastic fluid. Rheol. Acta 53 (12), 911926.10.1007/s00397-014-0796-9
Lim, E. J., Ober, T. J., Edd, J. F., Desai, S. P., Neal, D., Bong, K. W., Doyle, P. S., McKinley, G. H. & Toner, M. 2014 Inertio-elastic focusing of bioparticles in microchannels at high throughput. Nat. Commun. 5, 4120.10.1038/ncomms5120
Loisel, V., Abbas, M., Masbernat, O. & Climent, E. 2013 The effect of neutrally buoyant finite-size particles on channel flows in the laminar-turbulent transition regime. Phys. Fluids 25 (12), 123304.10.1063/1.4848856
Lucci, F., Ferrante, A. & Elghobashi, S. 2011 Is Stokes number an appropriate indicator for turbulence modulation by particles of Taylor-length-scale size? Phys. Fluids 23 (2), 025101.10.1063/1.3553279
Lumley, J. L. 1969 Drag reduction by additives. Annu. Rev. Fluid Mech. 1 (1), 367384.10.1146/annurev.fl.01.010169.002055
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.10.1017/S0022112002001738
Matas, J. P., Morris, J. F. & Guazzelli, E. 2004 Inertial migration of rigid spherical particles in Poiseuille flow. J. Fluid Mech. 515, 171195.10.1017/S0022112004000254
Morris, J. F. 2009 A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow. Rheol. Acta 48 (8), 909923.10.1007/s00397-009-0352-1
Naso, A. & Prosperetti, A. 2010 The interaction between a solid particle and a turbulent flow. New J. Phys. 12, 033040.
Nicolaou, L., Jung, S. Y. & Zaki, T. A. 2015 A robust direct-forcing immersed boundary method with enhanced stability for moving body problems in curvilinear coordinates. Comput. Fluids 119, 101114.10.1016/j.compfluid.2015.06.030
Nowbahar, A., Sardina, G., Picano, F. & Brandt, L. 2013 Turbophoresis attenuation in a turbulent channel flow with polymer additives. J. Fluid Mech. 732, 706719.10.1017/jfm.2013.398
Page, J. & Zaki, T. A. 2014 Streak evolution in viscoelastic Couette flow. J. Fluid Mech. 742, 520521.10.1017/jfm.2013.686
Page, J. & Zaki, T. A. 2015 The dynamics of spanwise vorticity perturbations in homogeneous viscoelastic shear flow. J. Fluid Mech. 777, 327363.10.1017/jfm.2015.368
Pan, Y. & Banerjee, S. 1996 Numerical simulation of particle interactions with wall turbulence. Phys. Fluids 8 (10), 27332755.10.1063/1.869059
Pan, Y. & Banerjee, S. 1997 Numerical investigation of the effects of large particles on wall-turbulence. Phys. Fluids 9 (12), 37863807.10.1063/1.869514
Picano, F., Breugem, W. P. & Brandt, L. 2015 Turbulent channel flow of dense suspensions of neutrally buoyant spheres. J. Fluid Mech. 764, 463487.10.1017/jfm.2014.704
Pope, S. B. 2000 Turbulent Flows, vol. 12. Cambridge University Press.10.1017/CBO9780511840531
Reade, W. C. & Collins, L. R. 2000 Effect of preferential concentration on turbulent collision rates. Phys. Fluids 12 (10), 25302540.10.1063/1.1288515
Rosenfeld, M., Kwak, D. & Vinokur, M. 1991 A fractional step solution method for the unsteady incompressible Navier–Stokes equations in generalized coordinate systems. J. Comput. Phys. 94 (1), 102137.10.1016/0021-9991(91)90139-C
Scirocco, R., Vermant, J. & Mewis, J. 2005 Shear thickening in filled Boger fluids. J. Rheol. 49 (2), 551567.10.1122/1.1849185
Segre, G. & Silberberg, A. 1961 Radial particle displacements in Poiseuille flow of suspensions. Nature 189 (4760), 209210.10.1038/189209a0
Shao, X., Wu, T. & Yu, Z. 2012 Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number. J. Fluid Mech. 693, 319344.10.1017/jfm.2011.533
Shaw, R. 2003 Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35, 183227.10.1146/annurev.fluid.35.101101.161125
Silberman, E. 1983 The effect of drag-reducing additives on fluid flows and their industrial applications part 1: basic aspects. J. Hydraul Res. 21 (1), 7273.
Snijkers, F., D’Avino, G., Maffettone, P. L., Greco, F., Hulsen, M. A. & Vermant, J. 2011 Effect of viscoelasticity on the rotation of a sphere in shear flow. J. Non-Newtonian Fluid Mech. 166 (7–8), 363372.10.1016/j.jnnfm.2011.01.004
Tamano, S., Graham, M. D. & Morinishi, Y. 2011 Streamwise variation of turbulent dynamics in boundary layer flow of drag-reducing fluid. J. Fluid Mech. 686 (10), 352377.10.1017/jfm.2011.334
Toms, B. A. 1948 Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In Proceedings of the 1st International Congress on Rheology, pp. 135141. North-Holland.
Uhlmann, M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209 (2), 448476.10.1016/
Uhlmann, M. & Doychev, T. 2014 Sedimentation of a dilute suspension of rigid spheres at intermediate Galileo numbers: the effect of clustering upon the particle motion. J. Fluid Mech. 752 (2), 310348.10.1017/jfm.2014.330
Vaithianathan, T., Robert, A., Brasseur, J. G. & Collins, L. R. 2006 An improved algorithm for simulating three-dimensional, viscoelastic turbulence. J. Non-Newtonian Fluid Mech. 140 (1-3), 322.10.1016/j.jnnfm.2006.03.018
Virk, P. S., Mickley, H. S. & Smith, K. A. 1970 The ultimate asymptote and mean flow structure in Toms’ phenomenon. Trans. ASME J. Appl. Mech. 2 (37), 488493.10.1115/1.3408532
Wang, G., Abbas, M. & Climent, E. 2018 Modulation of the regeneration cycle by neutrally buoyant finite-size particles. J. Fluid Mech. 852, 257282.10.1017/jfm.2018.513
Wang, S. N., Shekar, A. & Graham, M. D. 2017 Spatiotemporal dynamics of viscoelastic turbulence in transitional channel flow. J. Non-Newtonian Fluid Mech. 244, 104122.10.1016/j.jnnfm.2017.04.008
White, C. M., Dubief, Y. & Klewicki, J. 2018 Properties of the mean momentum balance in polymer drag-reduced channel flow. J. Fluid Mech. 834, 409433.10.1017/jfm.2017.721
White, C. M. & Mungal, M. G. 2008 Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40 (1), 235256.10.1146/annurev.fluid.40.111406.102156
Xi, L. & Graham, M. D. 2010 Active and hibernating turbulence in minimal channel flow of newtonian and polymeric fluids. Phys. Rev. Lett. 104, 218301.10.1103/PhysRevLett.104.218301
Xi, L. & Graham, M. D. 2012 Intermittent dynamics of turbulence hibernation in Newtonian and viscoelastic minimal channel flows. J. Fluid Mech. 693, 433472.10.1017/jfm.2011.541
Yeo, K. & Maxey, M. R. 2011 Numerical simulations of concentrated suspensions of monodisperse particles in a Poiseuille flow. J. Fluid Mech. 682, 491518.10.1017/jfm.2011.241
Yu, Z., Lin, Z., Shao, X. & Wang, L. P. 2017 Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles. Phys. Rev. E 96 (3), 115.
Zade, S., Lundell, F. & Brandt, L. 2019 Turbulence modulation by finite-size spherical particles in Newtonian and viscoelastic fluids. Intl J. Multiphase Flow 112, 116129.10.1016/j.ijmultiphaseflow.2018.12.015
Zenit, R. & Feng, J. J. 2018 Hydrodynamic interactions among bubbles, drops, and particles in non-Newtonian liquids. Annu. Rev. Fluid Mech. 50 (1), 505534.10.1146/annurev-fluid-122316-045114
Zhang, Q. & Prosperetti, A. 2010 Physics-based analysis of the hydrodynamic stress in a fluid-particle system. Phys. Fluids 22 (3), 617.10.1063/1.3365950
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed