Skip to main content Accessibility help
×
Home

Diffusion-flame flickering as a hydrodynamic global mode

  • D. Moreno-Boza (a1), W. Coenen (a1), A. Sevilla (a2), J. Carpio (a3), A. L. Sánchez (a1) and A. Liñán (a4)...

Abstract

The present study employs a linear global stability analysis to investigate buoyancy-induced flickering of axisymmetric laminar jet diffusion flames as a hydrodynamic global mode. The instability-driving interactions of the buoyancy force with the density differences induced by the chemical heat release are described in the infinitely fast reaction limit for unity Lewis numbers of the reactants. The analysis determines the critical conditions at the onset of the linear global instability as well as the Strouhal number of the associated oscillations in terms of the governing parameters of the problem. Marginal instability boundaries are delineated in the Froude number/Reynolds number plane for different fuel jet dilutions. The results of the global stability analysis are compared with direct numerical simulations of time-dependent axisymmetric jet flames and also with results of a local spatio-temporal stability analysis.

Copyright

Corresponding author

Email address for correspondence: dmorenob@eng.ucsd.edu

References

Hide All
Batchelor, G. & Gill, A. E. 1962 Analysis of the stability of axisymmetric jets. J. Fluid Mech. 14, 529551.
Boulanger, J. 2010 Laminar round jet diffusion flame buoyant instabilities: study on the disappearance of varicose structures at ultra-low Froude number. Combust. Flame 157, 757768.
Buckmaster, J. & Peters, N. 1986 The infinite candle and its stability – a paradigm for flickering diffusion flames. Proc. Combust. Inst. 21, 18291836.
Burke, S. P. & Schumann, T. E. W. 1928 Diffusion flames. Ind. Engng Chem. 20, 9981004.
Carpio, J., Prieto, J. L. & Vera, M. 2016 Local anisotropic adaptive algorithm for the solution of low-Mach transient combustion problems. J. Comput. Phys. 306, 1942.
Cetegen, B. M. & Dong, Y. 2000 Experiments on the instability modes of buoyant diffusion flames and effects of ambient atmosphere on the instabilities. Exp. Fluids 28, 546558.
Chamberlin, D. S. & Rose, A. 1948 The flicker of luminous flames. Proc. Combust. Inst. 1–2, 2732.
Chen, L. D., Seaba, J. P., Roquemore, W. M. & Goss, L. P. 1988 Buoyant diffusion flames. Proc. Combust. Inst. 22, 677684.
Coenen, W., Lesshafft, L., Garnaud, X. & Sevilla, A. 2016 Global instability in low-density jets: physical eigenmodes and spurious feedback effects. J. Fluid Mech. (submitted).
Coenen, W. & Sevilla, A. 2012 The structure of the absolute unstable regions in the near field of low-density jets. J. Fluid Mech. 713, 123149.
Coenen, W., Sevilla, A. & Sánchez, A. L. 2008 Absolute instability of light jets emerging from circular injector tubes. Phys. Fluids 20, 074104.
Deissler, R. J. 1987 The convective nature of instability in plane poiseuille flow. Phys. Fluids 30, 23032305.
Durox, D., Yuan, T. & Villermaux, E. 1997 The effect of buoyancy on flickering in diffusion flames. Combust. Sci. Technol. 124, 277294.
Garnaud, X., Lesshafft, L., Schmid, P. J. & Huerre, P. 2013a Modal and transient dynamics of jet flows. Phys. Fluids 25, 044103.
Garnaud, X., Lesshafft, L., Schmid, P. J. & Huerre, P. 2013b The preferred mode of incompressible jets: linear frequency response analysis. J. Fluid Mech. 716, 189202.
Giannetti, F. & Luchini, P. 2007 Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167197.
Hallberg, M. P. & Strykowski, P. J. 2006 On the universality of global modes in low-density axisymmetric jets. J. Fluid Mech. 569, 493507.
Hecht, F. 2012 New development in FreeFem++. J. Numer. Math. 20 (3–4), 251265.
Huerre, P. 2000 Open shear flow instabilities. In Perspectives in Fluid Dynamics (ed. Batchelor, G., Moffatt, K. & Worster, G.), pp. 159229. Cambridge University Press.
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.
Jiang, X. & Luo, K. H. 2000 Combustion-induced buoyancy effects of an axisymmetric reactive plume. Proc. Combust. Inst. 28, 19891995.
Juniper, M. P., Li, L. K. B. & Nichols, J. W. 2009 Forcing of self-excited round jet diffusion flame. Proc. Combust. Inst. 32, 11911198.
Juniper, M. P., Tammisola, O. & Lundell, F. 2011 The local and global stability of confined planar wakes at intermediate Reynolds number. J. Fluid Mech. 686, 218238.
Khorrami, M. R., Malik, M. R. & Ash, R. L. 1989 Application of spectral collocation techniques to the stability of swirling flows. J. Comput. Phys. 81, 206229.
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics, 3rd edn. Pergamon.
Lehoucq, R. B., Sorensen, D. C. & Yang, C. 1998 ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM.
Lesshafft, L., Coenen, W., Garnaud, X. & Sevilla, A. 2015 Modal instability analysis of light jets. In Procedia IUTAM, vol. 14, pp. 137140. Elsevier.
Lesshafft, L. & Huerre, P. 2007 Linear impulse response in hot round jets. Phys. Fluids 19, 024102.
Lesshafft, L., Huerre, P. & Sagaut, P. 2007 Frequency selection in globally unstable round jets. Phys. Fluids 19 (5), 054108.
Lesshafft, L. & Marquet, O. 2010 Optimal velocity and density profiles for the onset of absolute instability in jets. J. Fluid Mech. 662, 398408.
Liñán, A. 1991 The structure of diffusion flames. In Fluid Dynamical Aspects of Combustion Theory (ed. Onofri, M. & Tesev, A.), pp. 1129. Longman Scientific & Technical.
Liñán, A., Vera, M. & Sánchez, A. L. 2015 Ignition, liftoff, and extinction of gaseous diffusion flames. Annu. Rev. Fluid Mech. 47, 293314.
Lingens, A., Neemann, K., Meyer, J. & Schreiber, M. 1996a Instability of diffusion flames. Proc. Combust. Inst. 26, 10531061.
Lingens, A., Reeker, M. & Schreiber, M. 1996b Instability of buoyant diffusion flames. Exp. Fluids 20, 241248.
Mahalingam, S., Cantwell, B. J. & Ferziger, J. H. 1991 Stability of low-speed reacting flows. Phys. Fluids A 3, 15331543.
Marquet, O., Sipp, D. & Jacquin, L. 2008 Sensitivity analysis and passive control of cylinder flow. J. Fluid Mech. 615, 221252.
Maxworthy, T. 1999 The flickering candle: transition to a global oscillation in a thermal plume. J. Fluid Mech. 390, 297323.
Nichols, J., Chomaz, J.-M. & Schmid, P. J. 2009 Twisted absolute instability in lifted flames. Phys. Fluids 21, 015110.
Nichols, J. R. & Lele, S. K. 2011 Global modes and transient response of a cold supersonic jet. J. Fluid Mech. 669, 225241.
Nichols, J. W. & Schmid, P. J. 2008 The effect of a lifted flame on the stability of round fuel jets. J. Fluid Mech. 609, 275284.
Pier, B., Huerre, P. & Chomaz, J.-M. 1998 Steep nonlinear global modes in spatially developing media. Phys. Fluids 10, 24332435.
Qadri, U. A., Chandler, G. J. & Juniper, M. P. 2015 Self-sustained hydrodynamic oscillations in lifted jet diffusion flames: origin and control. J. Fluid Mech. 775, 201222.
Sato, H., Amagai, K. & Arai, M. 2000 Flickering frequencies of diffusion flames observed under various gravity fields. Proc. Combust. Inst. 28, 19811987.
See, Y. C. & Ihme, M. 2014 Effects of finite-rate chemistry and detailed transport on the instability of jet diffusion flames. J. Fluid Mech. 745, 647681.
Shvab, V. A. 1948 The relationship between the temperature and velocity fields in a gaseous flame. In Research on Combustion Processes in Natural Fuel (ed. Knorre, G. F.), pp. 231248. Gosenergoizdat.
Soteriou, M. C. & Ghoniem, A. F. 1995 Effects of the free-stream density ratio on free and forced spatially developing shear layers. Phys. Fluids 7, 2036.
Toong, T.-Y., Salant, R. F., Stopford, J. M. & Anderson, G. Y. 1965 Mechanisms of combustion instability. Proc. Combust. Inst. 10, 13011313.
Trefethen, L. N. & Embree, M. 2005 Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press.
Zel’dovich, Y. B. 1949 Teorii gorenia neperemeshannykh gazov. Zh. Tekh. Fiz. 19, 11991210.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed