Skip to main content Accessibility help
×
Home

Deformation characteristics of a single droplet driven by a piezoelectric nozzle of the drop-on-demand inkjet system

  • Shangkun Wang (a1), Yonghong Zhong (a1) and Haisheng Fang (a1)

Abstract

In the drop-on-demand (DOD) inkjet system, deformation process and the direct relations between the droplet motions and the liquid properties have been seldom investigated, although they are very critical for the printing accuracy. In this study, experiments and computational simulations regarding deformation of a single droplet driven by a piezoelectric nozzle have been conducted to address the deformation characteristics of droplets. It is found that the droplet deformation is influenced by the pressure wave propagation in the ink channel related to the driven parameters and reflected in the subsequent droplet motions. The deformation extent oscillates with a certain period of $T$ and a decreasing amplitude as the droplet moves downwards. The deformation extent is found strongly dependent on the capillary number ( $Ca$ ), first ascending and then descending as the number increases. The maximum value of the deformation extent is surprisingly found to be within range of 0.068–0.082 of the $Ca$ number regardless of other factors. Furthermore, the Rayleigh’s linear relation of the oscillation frequency of the droplet to the parameter, $\sqrt{\unicode[STIX]{x1D70E}/\unicode[STIX]{x1D70C}r^{3}}$ (where $\unicode[STIX]{x1D70E}$ is the surface tension coefficient, $\unicode[STIX]{x1D70C}$ is the density and $r$ is the droplet’s radius), is updated with a smaller slope shown both by experiment and simulation.

Copyright

Corresponding author

Email address for correspondence: hafang@hust.edu.cn

References

Hide All
Becker, E., Hiller, W. J. & Kowalewski, T. A. 1991 Experimental and theoretical investigation of large-amplitude oscillations of liquid droplets. J. Fluid Mech. 231, 189210.10.1017/S0022112091003361
Bogy, D. B. & Talke, F. E. 1984 Experimental and theoretical-study of wave-propagation phenomena in drop-on-demand ink jet devices. IBM J. Res. Dev. 28 (3), 314321.10.1147/rd.283.0314
De Gans, B. J., Duineveld, P. C. & Schubert, U. S. 2004 Inkjet printing of polymers: state of the art and future developments. Adv. Mater. 16 (3), 203213.10.1002/adma.200300385
Derby, B. 2011 Inkjet printing ceramics: From drops to solid. J. Eur. Ceram. Soc. 31 (14), 25432550.10.1016/j.jeurceramsoc.2011.01.016
Dijksman, J. F., Duineveld, P. C., Hack, M. J. J., Pierik, A., Rensen, J., Rubingh, J.-E., Schram, I. & Vernhout, M. M. 2007 Precision ink jet printing of polymer light emitting displays. J. Mater. Chem. 17 (6), 511522.10.1039/B609204G
Fromm, J. E. 1984 Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM J. Res. Dev. 28 (3), 322333.10.1147/rd.283.0322
Kamyshny, A. 2011 Metal-based Inkjet Inks for Printed Electronics. Open Appl. Phys. J. 4 (1), 1936.10.2174/1874183501104010019
Kornek, U., Müller, F., Harth, K., Hahn, A., Ganesan, S., Tobiska, L. & Stannarius, R. 2010 Oscillations of soap bubbles. New J. Phys. 12, 073031.10.1088/1367-2630/12/7/073031
McKerricher, G., Vaseem, M. & Shamim, A. 2017 Fully inkjet-printed microwave passive electronics. Microsystems & Nanoengineering 3 (2016), 16075.10.1038/micronano.2016.75
Olsson, E. & Kreiss, G. 2005 A conservative level set method for two phase flow. J. Comput. Phys. 210 (1), 225246.
Olsson, E., Kreiss, G. & Zahedi, S. 2007 A conservative level set method for two phase flow II. J. Comput. Phys. 225 (1), 785807.10.1016/j.jcp.2006.12.027
Rayleigh, L. 1879 On the Capillary Phenomena of Jets. Proc. R. Soc. Lond. 29 (196–199), 7197.
Rein, M. 1993 Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12 (2), 6193.10.1016/0169-5983(93)90106-K
Reis, N., Ainsley, C. & Derby, B. 2005 Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors. J. Appl. Phys. 97 (9), 094903.10.1063/1.1888026
Saunders, R. E. & Derby, B. 2014 Inkjet printing biomaterials for tissue engineering: bioprinting. Intl Mater. Rev. 59 (8), 430448.10.1179/1743280414Y.0000000040
Shin, W. J., Jeong, Y. S., Choi, K. & Shin, W. G. 2015 The effect of inkjet operating parameters on the size control of aerosol particles. Aerosol Sci. Technol. 49 (12), 12561262.10.1080/02786826.2015.1115465
Wijshoff, H.2006 Manipulating drop formation in piezo acoustic inkjet. In NIP & Digital Fabrication Conference, vol. 2006, no. 1, pp. 79–82.
Wijshoff, H. 2010 The dynamics of the piezo inkjet printhead operation. Phys. Rep. 491 (4–5), 77177.
Yun, S. 2017 Bouncing of an ellipsoidal drop on a superhydrophobic surface. Sci. Rep. 7 (1), 17699.10.1038/s41598-017-18017-2
Zhang, X. 1999 Dynamics of growth and breakup of viscous pendant drops into air. J. Colloid Interface Sci. 212 (1), 107122.10.1006/jcis.1998.6047
Zhong, Y., Fang, H., Ma, Q. & Dong, X. 2018 Analysis of droplet stability after ejection from an inkjet nozzle. J. Fluid Mech. 845, 378391.10.1017/jfm.2018.251
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Deformation characteristics of a single droplet driven by a piezoelectric nozzle of the drop-on-demand inkjet system

  • Shangkun Wang (a1), Yonghong Zhong (a1) and Haisheng Fang (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed