Skip to main content Accessibility help
×
Home

Deep-water plunging breakers: a comparison between potential theory and experiments

  • Douglas G. Dommermuth (a1), Dick K. P. Yue (a1), W. M. Lin (a1), R. J. Rapp (a1), E. S. Chan (a2) and W. K. Melville (a2)...

Abstract

The primary objective of this paper is to provide a detailed confirmation of the validity of potential-flow theory for describing steep gravity waves produced in an experimental tank. Very high-resolution computations are carried out which use a refined mixed Eulerian-Lagrangian solution scheme under the assumptions of potential flow. The numerical results for a plunging breaker produced by a programmed piston-type wavemaker are found to be in excellent agreement with tank measurements up to and including overturning. The calculated free-surface elevations are almost indistinguishable from measured profiles, even close to where the wave plunges. The horizontal and vertical water-particle velocities measured with a laser anemometer throughout the water depth at two longitudinal stations are also well predicted by the theory. In contrast to the fully nonlinear theory, predictions based on linearized theory become poorer as the wave packet moves down the tank. To allow other investigators to evaluate the computations and experiments, the Fourier amplitudes and phases which completely specify the time history of the wavemaker's velocity are given in Appendix B.

Copyright

References

Hide All
Baker, G. R., Meiron, D. I. & Orszag, S. A. 1982 Generalized vortex methods for free-surface flow problems. J. Fluid Mech. 123, 477501.
Chan, E. S. 1985 Deep water breaking wave forces on structures. Sc.D. dissertation, MIT, Dept. of Civil Engineering.
Dommermuth, D. G. & Yue, D. K. P. 1987 Numerical simulations of nonlinear axisymmetric flows with a free surface. J. Fluid Mech. 178, 195219.
Fink, P. T. & Soh, W. K. 1974 Calculation of vortex sheets in unsteady flow and applications in ship hydrodynamics. In Proc. 10th Symp. Naval Hydro., Cambridge, MA (ed. R. D. Cooper & S. W. Doroff), pp. 463491. Washington: Government Printing Office.
Greenhow, M. 1983 Free-surface flows related to breaking waves. J. Fluid Mech. 134, 259275.
Greenhow, M., Vinje, T., Brevig, P. & Taylor, J. 1982 A theoretical and experimental study of the capsize of Salter's duck in extreme waves. J. Fluid Mech. 118, 221239.
Kennard, E. H. 1949 Generation of surface waves by a moving partition. Q. Appl. Maths 7, 303312.
Lin, W. M. 1984 Nonlinear motion of the free surface near a moving body. Ph.D. thesis, MIT, Dept. of Ocean Engineering.
Lin, W. M., Newman, J. N. & Yue, D. K. P. 1984 Nonlinear forced motions of floating bodies. In Proc. 15th Symp. on Naval Hydro., Hamburg, pp. 3349. Washington: National Academy Press.
Longuet-Higgins, M. S. 1974 Breaking waves in deep or shallow water. In Proc. 10th Symp. Naval Hydro., Cambridge, MA (ed. R. D. Cooper & S. W. Doroff), pp. 597605. Washington: Government Printing Office.
Longuet-Higgins, M. S. 1982 Parametric solutions for breaking waves. J. Fluid Mech. 121, 403424.
Longuet-Higgins, M. S. & Cokelet, E. D. 1976 The deformation of steep surface waves on water. I. A numerical method of computation. Proc. R. Soc. Lond. A 350, 126.
Melville, W. K. & Rapp, R. J. 1985 Momentum flux in breaking waves. Nature 317, 514516.
New, A. 1983 A class of elliptical free-surface flows. J. Fluid Mech. 130, 219239.
New, A. L., McIver, P. & Peregrine, D. H. 1985 Computations of overturning waves. J. Fluid Mech. 150, 233251.
Rapp, R. J. 1986 Laboratory measurements of deep water breaking waves. Ph.D. thesis, MIT, Dept. of Ocean Engineering.
Schwartz, L. W. 1974 Computer extension and analytic continuation of Stokes' expansion for gravity waves. J. Fluid Mech. 62, 553578.
Ursell, F., Dean, R. G. & Yu, Y. S. 1959 Forced small-amplitude water waves: a comparison of theory and experiment. J. Fluid Mech. 7, 3352.
Vinje, T. & Brevig, P. 1981 Nonlinear ship motions. In Proc. 3rd Intl Conf. Num. Ship Hydro., Paris, pp. 257268. Bassin d'Essais des Carénes, France.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Deep-water plunging breakers: a comparison between potential theory and experiments

  • Douglas G. Dommermuth (a1), Dick K. P. Yue (a1), W. M. Lin (a1), R. J. Rapp (a1), E. S. Chan (a2) and W. K. Melville (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed