Skip to main content Accessibility help

Data-enabled prediction of streak breakdown in pressure-gradient boundary layers

  • M. J. Philipp Hack (a1) (a2) and Tamer A. Zaki (a2) (a3)


Streaks in pre-transitional boundary layers are analysed and their properties are extracted from direct numerical simulation data. Streaks that induce breakdown to turbulence via secondary instability are shown to differ from the remainder of the population in various attributes. Conditionally averaged flow fields establish that they are situated farther away from the wall, and have a larger cross-sectional area and higher peak amplitude. The analysis also shows that the momentum thickness acts as a similarity parameter for the properties of the streaks. Probability density functions of the streak amplitude, area, and shear along the streaks, collapse among the various pressure gradients when plotted as a function of the momentum thickness. A prediction scheme for laminar–turbulent transition based on artificial neural networks is presented, which can identify the streaks that will eventually induce the formation of turbulent spots. In comparison to linear stability theory, the approach achieves a higher prediction accuracy at considerably lower computational cost.


Corresponding author

Email address for correspondence:


Hide All
Andersson, P., Berggren, M. & Henningson, D. S. 1999 Optimal disturbances and bypass transition in boundary layers. Phys. Fluids 11 (1), 134150.
Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. S. 2001 On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 2960.
Asai, M., Minagawa, M. & Nishioka, M. 2002 The instability and breakdown of a near-wall low-speed streak. J. Fluid Mech. 455, 289314.
Baldi, P. & Hornik, K. 1989 Neural networks and principal component analysis: learning from examples without local minima. Neural Networks 2, 5358.
Brandt, L., Schlatter, P. & Henningson, D. S. 2004 Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167198.
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4 (8), 16371650.
Corbett, P. & Bottaro, A. 2000 Optimal perturbations for boundary layers subject to stream-wise pressure gradient. Phys. Fluids 12 (1), 120130.
Cossu, C., Brandt, L., Bagheri, S. & Henningson, D. S. 2011 Secondary threshold amplitudes for sinuous streak breakdown. Phys. Fluids 23, 074103.
Dunham, J. 1972 Predictions of boundary layer transition on turbomachinery blades. In AGARD Meeting on Boundary Layers in Turbomachines (ed. Surugue, J.), vol. AG‐164, pp. 5572. AGARD.
Elofsson, P. A., Kawakami, M. & Alfredsson, P. H. 1999 Experiments on the stability of streamwise streaks in plane Poiseuille flow. Phys. Fluids 11 (4), 915930.
Gautier, N., Aider, J.-L., Duriez, T., Noack, B. R., Segond, M. & Abel, M. 2015 Closed-loop separation control using machine learning. J. Fluid Mech. 770, 442457.
Gostelow, J. P., Melwani, N. & Walker, G. J. 1996 Effects of streamwise pressure gradient on turbulent spot development. Trans. ASME J. Turbomach. 118, 737743.
Gustavsson, L. H. 1991 Energy growth of three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech. 224, 241260.
Hack, M. J. P. & Zaki, T. A. 2014a Streak instabilities in boundary layers beneath free-stream turbulence. J. Fluid Mech. 741, 280315.
Hack, M. J. P. & Zaki, T. A. 2014b Localized streak instabilities in pressure gradient boundary layers. In 7th AIAA Theoretical Fluid Mechanics Conference, American Institute of Aeronautics and Astronautics.
Hornik, K. 1991 Approximation capabilities of multilayer feedforward networks. Neural Networks 4, 251257.
Hunt, J. C. R. & Carruthers, D. J. 1990 Rapid distortion theory and the ‘problems’ of turbulence. J. Fluid Mech. 212, 497532.
Jacobs, R. G. & Durbin, P. A. 2001 Simulations of bypass transition. J. Fluid Mech. 428, 185212.
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308323.
Landahl, M. T. 1975 Wave breakdown and turbulence. SIAM J. Appl. Maths 28 (4), 735756.
Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98, 243251.
Lee, C., Kim, J., Babcock, D. & Goodman, R. 1997 Application of neural networks to turbulence control for drag reduction. Phys. Fluids 9 (6), 17401747.
Mandal, A. C., Venkatakrishnan, L. & Dey, J. 2010 A study on boundary-layer transition induced by free-stream turbulence. J. Fluid Mech. 660, 114146.
Mans, J., de Lange, H. C. & van Steenhoven, A. A. 2007 Sinuous breakdown in a flat plate boundary layer exposed to free-stream turbulence. Phys. Fluids 19, 088101.
Marquillie, M., Ehrenstein, U. & Laval, J.-P. 2011 Instability of streaks in wall turbulence with adverse pressure gradient. J. Fluid Mech. 681, 205240.
Matsubara, M. & Alfredsson, P. 2001 Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech. 430, 149168.
Milano, M. & Koumoutsakos, P. 2002 Neural network modeling for near wall turbulent flow. J. Comput. Phys. 182, 126.
Nolan, K. P. & Zaki, T. A. 2013 Conditional sampling of transitional boundary layers in pressure gradients. J. Fluid Mech. 728, 306339.
Otsu, N. 1979 A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 6266.
Rosenblatt, F. 1958 The Perceptron: a probabilistic model for information storage and organization of the brain. Psychol. Rev. 65 (6), 386408.
Rosenfeld, M., Kwak, D. & Vinokur, M. 1991 A fractional step solution method for the unsteady incompressible Navier–Stokes equations in generalized coordinate systems. J. Comput. Phys. 94, 102137.
Rumelhart, D. & McClelland, J. 1986 Parallel Distributed Processing. MIT Press.
Vaughan, N. J. & Zaki, T. A. 2011 Stability of zero-pressure-gradient boundary layer distorted by unsteady Klebanoff streaks. J. Fluid Mech. 681, 116153.
Zaki, T. A. 2013 From streaks to spots and on to turbulence: exploring the dynamics of boundary layer transition. Flow Turbul. Combust. 91, 451473.
Zaki, T. A. & Durbin, P. A. 2005 Mode interaction and the bypass route to transition. J. Fluid Mech. 531, 85111.
Zaki, T. A. & Saha, S. 2009 On shear sheltering and the structure of vortical modes in single- and two-fluid boundary layers. J. Fluid Mech. 626, 111147.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed