Skip to main content Accessibility help
×
Home

Core mechanisms of drag enhancement on bodies settling in a stratified fluid

  • Jie Zhang (a1) (a2), Matthieu J. Mercier (a2) and Jacques Magnaudet (a2)

Abstract

Stratification due to salt or heat gradients greatly affects the distribution of inert particles and living organisms in the ocean and the lower atmosphere. Laboratory studies considering the settling of a sphere in a linearly stratified fluid confirmed that stratification may dramatically enhance the drag on the body, but failed to identify the generic physical mechanism responsible for this increase. We present a rigorous splitting scheme of the various contributions to the drag on a settling body, which allows them to be properly disentangled whatever the relative magnitude of inertial, viscous, diffusive and buoyancy effects. We apply this splitting procedure to data obtained via direct numerical simulation of the flow past a settling sphere over a range of parameters covering a variety of situations of laboratory and geophysical interest. Contrary to widespread belief, we show that, in the parameter range covered by the simulations, the drag enhancement is generally not primarily due to the extra buoyancy force resulting from the dragging of light fluid by the body, but rather to the specific structure of the vorticity field set in by buoyancy effects. Simulations also reveal how the different buoyancy-induced contributions to the drag vary with the flow parameters. To unravel the origin of these variations, we analyse the different possible leading-order balances in the governing equations. Thanks to this procedure, we identify several distinct regimes which differ by the relative magnitude of length scales associated with stratification, viscosity and diffusivity. We derive the scaling laws of the buoyancy-induced drag contributions in each of these regimes. Considering tangible examples, we show how these scaling laws combined with numerical results may be used to obtain reliable predictions beyond the range of parameters covered by the simulations.

Copyright

Corresponding author

Email address for correspondence: magnau@imft.fr

References

Hide All
Abaid, N., Adalsteinsson, D., Agyapong, A. & McLaughlin, R. M. 2004 An internal splash: levitation of falling spheres in stratified fluids. Phys. Fluids 16, 15671580.
Acrivos, A. 1960 Solution of the laminar boundary layer equation at high Prandtl numbers. Phys. Fluids 3, 657658.
Akiyama, S., Yusuke, W., Okino, S. & Hanazaki, H. 2019 Unstable jets generated by a sphere descending in a very strongly stratified fluid. J. Fluid Mech. 867, 2644.
Alldredge, A. L., Cowles, T. J., MacIntyre, S., Rines, J. E. B., Donaghay, P. L., Greenlaw, C. F., Holliday, D. V., Dekshenieks, M. M., Sullivan, J. M. & Zaneveld, J. R. V. 2002 Occurrence and mechanisms of formation of a dramatic thin layer of marine snow in a shallow Pacific fjord. Mar. Ecol.-Prog. Ser. 233, 112.
Ardekani, A. M. & Stocker, R. 2010 Stratlets: low Reynolds number point-force solutions in a stratified fluid. Phys. Rev. Lett. 105, 084502.
Auguste, F. & Magnaudet, J. 2018 Path oscillations and enhanced drag of light rising spheres. J. Fluid Mech. 841, 228266.
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Batchelor, G. K. 1980 Mass transfer from small particles suspended in turbulent fluid. J. Fluid Mech. 98, 609623.
Bergström, B. & Strömberg, J. O. 1997 Behavioural differences in relation to pycnoclines during vertical migration of the euphausiids. Meganyctiphanes norvegica (M. Sars) and Thysanoessa raschii (M. Sars). J. Plankton Res. 19, 255261.
Bewley, T. & Meneghello, G. 2016 Efficient coordination of swarms of sensor-laden balloons for persistent, in situ, real-time measurement of hurricane development. Phys. Rev. Fluids 1, 060507.
Blanchette, F. & Shapiro, A. M. 2012 Drops settling in sharp stratification with and without Marangoni effects. Phys. Fluids 24, 042104.
Blanco, A. & Magnaudet, J. 1995 The structure of the axisymmetrical high-Reynolds number flow around an ellipsoidal bubble of fixed shape. Phys. Fluids 7, 12651274.
Burns, P. & Chemel, C. 2015 Interactions between downslope flows and a developing cold-air pool. Boundary-Layer Meteorol. 154, 5780.
Calmet, I. & Magnaudet, J. 1997 Large-eddy simulation of high-Schmidt number mass transfer in a turbulent channel flow. Phys. Fluids 9, 438455.
Camassa, R., Falcon, C., Lin, J., McLaughlin, R. M. & Mykins, N. 2010 A first-principle predictive theory for a sphere falling through sharply stratified fluid at low Reynolds number. J. Fluid Mech. 664, 436465.
Camassa, R., Falcon, C., Lin, J., McLaughlin, R. M. & Parker, R. 2009 Prolonged residence times for particles settling through stratified miscible fluids in the Stokes regime. Phys. Fluids 21, 031702.
Camassa, R., Khatri, S., McLaughlin, R. M., Prairie, J. C., White, B. L. & Yu, S. 2013 Retention and entrainment effects: Experiments and theory for porous spheres settling in sharply stratified fluids. Phys. Fluids 25, 081701.
Candelier, F., Mehaddi, R. & Vauquelin, O. 2014 The history force on a small particle in a linearly stratified fluid. J. Fluid Mech. 749, 184200.
Chadwick, R. S. & Zvirin, Y. 1974 Slow viscous flow of an incompressible stratified fluid past a sphere. J. Fluid Mech. 66, 377383.
Chongsiripinyo, A. P. & Sarkar, S. 2017 On the vortex dynamics of flow past a sphere at Re = 3700 in a uniformly stratified fluid. Phys. Fluids 29, 020704.
Condie, S. A. & Bormans, M. 1997 The influence of density stratification on particle settling, dispersion and population growth. J. Theor. Biol. 187, 6575.
D’Asaro 2003 Performance of autonomous Lagrangian floats. J. Atmos. Ocean. Technol. 20, 896911.
Denman, K. L. & Gargett, A. E. 1995 Biological-physical interactions in the upper ocean: the role of vertical and small scale transport processes. Annu. Rev. Fluid Mech. 27, 225256.
Farmer, D. & Armi, L. 1999 The generation and trapping of solitary waves over topography. Science 283, 188190.
Hanazaki, H., Kashimoto, K. & Okamura, T. 2009a Jets generated by a sphere moving vertically in a stratified fluid. J. Fluid Mech. 638, 173197.
Hanazaki, H., Konishi, K. & Okamura, T. 2009b Schmidt-number effects on the flow past a sphere moving vertically in a stratified diffusive fluid. Phys. Fluids 21, 026602.
Hanazaki, H., Nakamura, S. & Yoshikawa, H. 2015 Numerical simulation of jets generated by a sphere moving vertically in a stratified fluid. J. Fluid Mech. 765, 424451.
Higginson, R. C., Dalziel, S. B. & Linden, P. F. 2003 The drag on a vertically moving grid of bars in a linearly stratified fluid. Exp. Fluids 34, 678686.
Kang, I. S. & Leal, L. G. 1988 The drag coefficient for a spherical bubble in a uniform streaming flow. Phys. Fluids 31, 233237.
Kellogg, W. W. 1980 Aerosols and climate. In Interaction of Energy and Climate (ed. Bach, W., Pankrath, J. & Williams, J.), pp. 281303. Reidel.
Kindler, K., Khalili, A. & Stocker, R. 2010 Diffusion-limited retention of porous particles at density interfaces. Proc. Natl Acad. Sci. USA 107, 2216322168.
Levich, V. G. 1962 Physicochemical Hydrodynamics. Prentice-Hall.
List, E. J. 1971 Laminar momentum jets in a stratified fluid. J. Fluid Mech. 45, 561574.
MacIntyre, S., Alldredge, A. L. & Gotschalk, C. C. 1995 Accumulation of marine snow at density discontinuities in the water column. Limnol. Oceanogr. 40, 449468.
Magnaudet, J. 2011 A ‘reciprocal’ theorem for the prediction of loads on a body moving in an inhomogeneous flow at arbitrary Reynolds number. J. Fluid Mech. 689, 564604.
Magnaudet, J., Rivero, M. & Fabre, J. 1995 Accelerated flows past a rigid sphere or a spherical bubble. 1. Steady straining flow. J. Fluid Mech. 284, 97135.
Mehaddi, R., Candelier, F. & Mehling, B. 2018 Inertial drag on a sphere settling in a stratified fluid. J. Fluid Mech. 855, 10741087.
Moore, D. W. 1963 The boundary layer on a spherical gas bubble. J. Fluid Mech. 16, 161176.
Mowbray, D. E. & Rarity, B. S. H. 1967 The internal wave pattern produced by a sphere moving vertically in a density stratified liquid. J. Fluid Mech. 30, 489495.
Okino, S., Akiyama, S. & Hanazaki, H. 2017 Velocity distribution around a sphere descending in a linearly stratified fluid. J. Fluid Mech. 826, 759780.
Pierson, J. L. & Magnaudet, J. 2018 Inertial settling of a sphere through an interface. Part 2. Sphere and tail dynamics. J. Fluid Mech. 835, 808851.
Ploug, H., Grossart, H. P., Azam, F. & Jorgensen, B. B. 1999 Photosynthesis, respiration, and carbon turnover in sinking marine snow from surface waters of Southern California Bight: implications for the carbon cycle in the ocean. Mar. Ecol. Prog. Ser. 179, 111.
Ploug, H., Iversen, M. H. & Fischer, G. 2008 Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: implications for substrate turnover by attached bacteria. Limnol. Oceanogr. 53, 18781886.
Riebesell, U. 1992 The formation of large marine snow and its sustained residence in surface waters. Limnol. Oceeanogr. 37, 6367.
Rückenstein, E. 1959 On heat transfer between vapour bubbles in motion and the boiling liquid from which they are generated. Chem. Engng Sci. 10, 2230.
Slinn, D. N. & Riley, J. J. 1998 A model for the simulation of turbulent boundary layers in an incompressible stratified flow. J. Comput. Phys. 144, 550602.
Srdic-Mitrovic, A. N., Mohamed, N. A. & Fernando, H. J. S. 1999 Gravitational settling of particles through density interfaces. J. Fluid Mech. 381, 175198.
Sutor, M. M. & Dagg, M. J. 2008 The effects of vertical sampling resolution on estimates of plankton biomass and rate calculations in stratified water columns. Estuar. Coast. Shelf Sci. 78, 107121.
Torres, C. R., Hanazaki, H., Ochoa, J., Castillo, J. & Van Woert, M. 2000 Flow past a sphere moving vertically in a stratified diffusive fluid. J. Fluid Mech. 417, 211236.
Turco, R. P., Toon, O. B., Ackerman, T. P., Pollack, J. B. & Sagan, C. 1990 Climate and smoke: an appraisal of nuclear winter. Science 247, 166176.
van Leer, B. 1977 Towards ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comput. Phys. 23, 276299.
Widder, E. A., Johnsen, S., Bernstein, S. A., Case, J. F. & Neilson, D. J. 1999 Thin layers of bioluminescent copepods found at density discontinuities in the water column. Mar. Biol. 134, 429437.
Yajima, N., Imamura, T., Izutsu, N. & Abe, T. 2004 Scientific Ballooning. Springer.
Yick, K. Y., Torres, C. R., Peacock, T. & Stocker, R. 2009 Enhanced drag of a sphere settling in a stratified fluid at small Reynolds numbers. J. Fluid Mech. 632, 4968.
Zvirin, Y. & Chadwick, R. S. 1975 Settling of an axially symmetric body in a viscous stratified fluid. Intl J. Multiphase Flow 1, 743752.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Core mechanisms of drag enhancement on bodies settling in a stratified fluid

  • Jie Zhang (a1) (a2), Matthieu J. Mercier (a2) and Jacques Magnaudet (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed