Skip to main content Accessibility help

Convective and absolute instabilities in Rayleigh–Bénard–Poiseuille mixed convection for viscoelastic fluids

  • S. C. Hirata (a1), L. S. de B. Alves (a2), N. Delenda (a1) and M. N. Ouarzazi (a1)


The convective and absolute nature of instabilities in Rayleigh–Bénard–Poiseuille (RBP) mixed convection for viscoelastic fluids is examined numerically with a shooting method as well as analytically with a one-mode Galerkin expansion. The viscoelastic fluid is modelled by means of a general constitutive equation that encompasses the Maxwell model and the Oldroyd-B model. In comparison to Newtonian fluids, two more dimensionless parameters are introduced, namely the elasticity number ${\it\lambda}_{1}$ and the ratio ${\it\Gamma}$ between retardation and relaxation times. Temporal stability analysis of the basic state showed that the three-dimensional thermoconvective problem can be Squire-transformed. Therefore, one must distinguish mainly between two principal roll orientations: transverse rolls TRs (rolls with axes perpendicular to the Poiseuille flow direction) and longitudinal rolls LRs (rolls with axes parallel to the Poiseuille flow direction). The critical Rayleigh number for the appearance of LRs is found to be independent of the Reynolds number ( $\mathit{Re}$ ). Depending on ${\it\lambda}_{1}$ and ${\it\Gamma}$ , two different regimes can be distinguished. In the weakly elastic regime, the emerging LRs are stationary, while they are oscillatory in the strongly elastic regime. For TRs, it is found that in the weakly elastic regime, the stabilization effect of $\mathit{Re}$ is more important than in Newtonian fluids. Moreover, for sufficiently elastic fluids a jump is observed in the oscillation frequencies and wavenumbers for moderate $\mathit{Re}$ . In the strongly elastic regime, the effect of the imposed throughflow is to promote the appearance of the upstream moving TRs for low values of $\mathit{Re}$ , which are replaced by downstream moving TRs for higher values of  $\mathit{Re}$ . Moreover, the results proved that, contrary to the case where $\mathit{Re}=0$ , the elasticity number ${\it\lambda}_{1}$ (the ratio ${\it\Gamma}$ ) has a strongly stabilizing (destabilizing) effect when the throughflow is added. The influence of the rheological parameters on the transition curves from convective to absolute instability in the Reynolds–Rayleigh number plane is also determined. We show that the viscoelastic character of the fluid hastens the transition to absolute instability and even may suppress the convective/absolute transition. Throughout this paper, similarities and differences with the corresponding problem for Newtonian fluids are highlighted.


Corresponding author

Email address for correspondence:


Hide All
de B. Alves, L. S., Kelly, R. E. & Karagozian, A. R. 2008 Transverse jet shear layer instabilities. Part 2. Linear analysis for large jet-to-crossflow velocity ratios. J. Fluid Mech. 602, 383401.
Bird, R. B., Armstrong, R. C. & Hassager, O. 1987 Dynamics of Polymeric Liquids. John Wiley & Sons.
Brevdo, L. 1991 Three-dimensional absolute and convective instabilities and spatially amplifying waves in parallel shear flows. Z. Angew. Math. Phys. 42 (2), 911942.
Brevdo, L. 2009 Three-dimensional absolute and convective instabilities at the onset of convection in a porous medium with inclined temperature gradient and vertical throughflow. J. Fluid Mech. 641, 475487.
Briggs, R. J. 1964 Electron-Stream Interaction with Plasmas. MIT Press.
Büchel, P. & Lücke, M. 2000a Influence of through-flow on binary fluid convection. Phys. Rev. E 61, 3793.
Büchel, P. & Lücke, M. 2000b Localized perturbations in binary fluid convection with and without throughflow. Phys. Rev. E 63, 016307.
Carrière, P. & Monkewitz, P. A. 1999 Convective versus absolute instability in mixed Rayleigh–Bénard–Poiseuille convection. J. Fluid Mech. 384, 243262.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon.
Coelho, P. M., Pinho, F. T. & Oliveira, P. J. 2002 Fully developed forced convection of the Phan-Thien–Tanner fluid in duts. Intl J. Heat Mass Transfer 45 (7), 14131423.
Combarnous, M. & Bories, S. A. 1975 Hydrothermal convection in saturated porous media. Adv. Hydrosci. 10, 231307.
Delache, A. & Ouarzazi, M. N. 2008 Weakly nonlinear interaction of mixed convection patterns in porous media heated from below. Intl J. Therm. Sci. 47, 709722.
Delache, A., Ouarzazi, M. N. & Combarnous, M. 2007 Spatio-temporal stability analysis of mixed convection flows in porous media heated from below: comparison with experiments. Intl J. Heat Mass Transfer 50, 14851499.
Diaz, E. & Brevdo, L. 2011 Absolute/convective instability dichotomy at the onset of convection in a porous layer with either horizontal or vertical solutal and inclined thermal gradients, and horizontal throughflow. J. Fluid Mech. 681, 567596.
Eltayeb, I. A. 1977 Nonlinear thermal convection in an elastiviscous layer heated from below. Proc. R. Soc. Lond. A 356 (1685), 161176.
Grandjean, E. & Monkewitz, P. A. 2009 Experimental investigation into localized instabilities of mixed Rayleigh–Bénard–Poiseuille convection. J. Fluid Mech. 640, 401419.
Green, T. III 1968 Oscillating convection in an elasticoviscous liquid. Phys. Fluids 11 (7), 14101412.
Hirata, S. C. & Ouarzazi, M. N. 2010 Three-dimensional absolute and convective instabilities in mixed convection of a viscoelastic fluid through a porous medium. Phys. Lett. A 374 (26), 26612666.
Hu, J., Ben Hadid, H. & Henry, D. 2007 Linear stability analysis of Poiseuille–Rayleigh–Bénard flows in binary fluids with Soret effect. Phys. Fluids 19, 034101.
Hu, J., Yin, X. Y., Henry, D. & Ben Hadid, H. 2009 Spatiotemporal evolution of Poiseuille–Rayleigh–Bénard flows in binary fluids with Soret effect under initial pulselike disturbancies. Phys. Rev. E 80, 026312.
Huerre, P. & Monkewitz, P. A. 1985 Absolute and convective instabilities in free shear layers. J. Fluid Mech. 159, 151168.
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22 (1), 473537.
Jung, C., Lücke, M. & Büchel, P. 1996 Influence of through-flow on linear pattern formation properties in binary mixture convection. Phys. Rev. E 54, 1510.
Kelly, R. E. & de B. Alves, L. S. 2008 A uniformly valid asymptotic solution for the transverse jet and its linear stability analysis. Phil. Trans. R. Soc. Lond. A 366, 27292744.
Kolka, R. W. & Ierley, G. R. 1987 On the convected linear stability of a viscoelastic Oldroyd-B fluid heated from below. J. Non-Newtonian Fluid Mech. 25, 209237.
Kolodner, P. 1998 Oscillatory convection in viscoelastic DNA suspensions. J. Non-Newtonian Fluid Mech. 75 (2–3), 167192.
Kolodner, P., Surko, C. M., Passner, A. & Williams, H. L. 1987 Pulses of oscillatory convection. Phys. Rev. A 36 (5), 24992502.
Larson, R. G. 1992 Instabilities in viscoelastic flows. Rheol. Acta 31 (3), 213263.
Li, Z. & Khayat, R. E. 2005 Finite-amplitude Rayleigh–Bénard convection and pattern selection for viscoelastic fluids. J. Fluid Mech. 529, 221251.
Martinand, D., Carrière, P. & Monkewitz, P. A. 2006 Three-dimensional global instability modes associated with a localized hot spot in Rayleigh–Bénard-Poiseuille convection. J. Fluid Mech. 551, 275301.
Martinez-Mardones, J. & Perez-Garcia, C. 1990 Linear instability in viscoelastic fluid convection. J. Phys.: Condens. Matter 2 (5), 12811290.
Martinez-Mardones, J. & Perez-Garcia, C. 1992 Bifurcation analysis and amplitude equations for viscoelastic convective fluids. Il Nuovo Cimento D 14 (9), 961975.
Martinez-Mardones, J., Tiemann, R., Walgraef, D. & Zeller, W. 1996 Amplitude equations and pattern selection in viscoelastic convection. Phys. Rev. E 54 (2), 14781488.
Mokarizadeh, H., Asgharian, M. & Raisi, A. 2013 Heat transfer in Couette–Poiseuille flow between parallel plates of the Giesekus viscoelastic fluid. J. Non-Newtonian Fluid Mech. 196, 95101.
Muller, H. W., Lucke, M. & Kamps, M. 1992 Transversal convection patterns in horizontal shear flow. Phys. Rev. A 45 (6), 37143726.
Nicolas, X. 2002 Bibliographical review on the Poiseuille–Rayleigh–Bénard flows: the mixed convection flows in horizontal rectangular ducts heated from below. Intl J. Therm. Sci. 41 (10), 9611016.
Nicolas, X., Luijks, J. M. & Platten, J. K. 2000 Linear stability of mixed convection flows in horizontal rectangular channels of finite transversal extension heated from below. Intl J. Heat Mass Transfer 43, 589610.
Nicolas, X., Mojtabi, A. & Platten, J. K. 1997 Two-dimensional numerical analysis of the Poiseuille–Bénard flow in a rectangular channel heated from below. Phys. Fluids 9, 337348.
Nouar, C., Benaouda-Zouaoui, B. & Desaubry, C. 2000 Laminar mixed convection in a horizontal annular duct. Case of thermodependent non-Newtonian fluid. Eur. J. Mech. (B/Fluids) 19 (3), 423452.
Ouarzazi, M. N., Mejni, F., Delache, A. & Labrosse, G. 2008 Nonlinear global modes in inhomogeneous mixed convection flows in porous media. J. Fluid Mech. 595, 367377.
Ouazzani, M. T., Platten, J. K. & Mojtabi, A. 1990 Experimental study of mixed convection between two horizontal plates at different temperatures – II. Intl J. Heat Mass Transfer 33, 14171427.
Park, H. M. & Lee, H. S. 1996 Hopf bifurcations of viscoelastic fluids heated from below. J. Non-Newtonian Fluid Mech. 66 (1), 134.
Peixinho, J., Desaubry, C. & Lebouché, M. 2008 Heat transfer of a non-Newtonian fluid (carbopol aqueous solution) in transitional pipe flow. Intl J. Heat Mass Transfer 51 (1–2), 198209.
Rosenblat, S. 1986 Thermal convection in a viscoelastic liquid. J. Non-Newtonian Fluid Mech. 21 (2), 201223.
Sheela-Francisca, J., Tso, C. P., Hung, Y. M. & Rilling, D. 2012 Heat transfer on asymmetric thermal viscous dissipative Couette–Poiseuille flow of pseudo-plastic fluids. J. Non-Newtonian Fluid Mech. 169–170, 4253.
Sokolov, M. & Tanner, R. I. 1972 Convective stability of a general viscoelastic fluid heated from below. Phys. Fluids 15 (4), 534539.
Suslov, S. A. 2006 Numerical aspects of searching convective/absolute instability transition. J. Comput. Phys. 212, 188217.
Suslov, S. A. & Paolucci, S. 1995 Stability of mixed-convection flow in a tall vertical channel under non-Boussinesq conditions. J. Fluid Mech. 303, 91115.
Suslov, S. A. & Paolucci, S. 2004 Stability of non-Boussinesq convection via the complex Ginzburg–Landau model. Fluid Dyn. Res. 35, 159203.
Vest, C. M. & Arpaci, V. S. 1969 Overstability of a viscoelastic fluid layer heated from below. J. Fluid Mech. 36 (3), 613623.
Wolfram, S. 2003 The Mathematica Book, 5th edn. Wolfram Media, Cambridge University Press.
Zhang, M., Lashgari, I., Zaki, T. A. & Brandt, L. 2013 Linear stability analysis of channel flow of viscoelastic Oldroyd-B and FENE-P fluids. J. Fluid Mech. 737, 249279.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Convective and absolute instabilities in Rayleigh–Bénard–Poiseuille mixed convection for viscoelastic fluids

  • S. C. Hirata (a1), L. S. de B. Alves (a2), N. Delenda (a1) and M. N. Ouarzazi (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed