Skip to main content Accessibility help
×
Home

Contact-line singularities resolved exclusively by the Kelvin effect: volatile liquids in air

  • A. Y. Rednikov (a1) and P. Colinet (a1)

Abstract

The contact line of a volatile liquid on a flat substrate is studied theoretically. We show that a remarkable result obtained for a pure-vapour atmosphere (Phys. Rev. E, vol. 87, 2013, 010401) also holds for an isothermal diffusion-limited vapour exchange with air. Namely, for both zero and finite Young’s angles, the motion- and phase-change-related contact-line singularities can in principle be regularised solely by the Kelvin effect (curvature dependence of saturation conditions). The latter prevents the curvature from diverging and rather leads to its versatile self-adjustment. To illustrate the point, the problem is resolved for a distinguished vicinity of the contact line (‘microregion’) in a ‘minimalist’ way, i.e. without any disjoining pressure, precursor film, Navier slip or any other microphysics. This also leads to the determination of the ‘Kelvin-only’ evaporation- and motion-induced apparent contact angles. With the Kelvin-only microscales actually turning out to be quite nanoscopic, other microphysics effects may nonetheless interfere too in reality. The Kelvin-only results will then yield a limiting case within such a more general formulation.

Copyright

Corresponding author

Email addresses for correspondence: aredniko@ulb.ac.be, pcolinet@ulb.ac.be

References

Hide All
Ajaev, V. S. 2005 Spreading of thin volatile liquid droplets on uniformly heated surfaces. J. Fluid Mech. 528, 279296.
Ajaev, V. S., Gambaryan-Roisman, T. & Stephan, P. 2010 Static and dynamic contact angles of evaporating liquids on heated surfaces. J. Colloid Interface Sci. 342, 550558.
Berteloot, G., Pham, C.-T., Daerr, A., Lequeux, F. & Limat, L. 2008 Evaporation-induced flow near a contact line: consequences on coating and contact angle. Europhys. Lett. 83, 14003.
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81, 739805.
Burelbach, J. P., Bankoff, S. G. & Davis, S. H. 1988 Effect of solid properties and contact angle in dropwise condensation and evaporation. J. Fluid Mech. 195, 463494.
Colinet, P. & Rednikov, A. 2011 On integrable singularities and apparent contact angles within a classical paradigm. Partial and complete wetting regimes with or without phase change. Eur. Phys. J. (Special Topics) 197, 89113.
Cox, R. G. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flows. J. Fluid Mech. 168, 169194.
DasGupta, S., Kim, I. Y. & Wayner, P. C. 1994 Use of the Kelvin–Clapeyron equation to model an evaporating curved microfilm. Trans. ASME J. Heat Transfer 116 (4), 10071015.
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. & Witten, T. A. 1997 Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827829.
Dehaeck, S., Rednikov, A. & Colinet, P. 2014 Vapor-based interferometric measurement of local evaporation rate and interfacial temperature of evaporating droplets. Langmuir 30, 20022008.
Derjaguin, B. V., Churaev, N. V. & Muller, V. M. 1987 Surface Forces. Consultants Bureau.
Doumenc, F. & Guerrier, B. 2011 A model coupling the liquid and gas phases for a totally wetting evaporative meniscus. Eur. Phys. J. (Special Topics) 197, 281293.
Doumenc, F. & Guerrier, B. 2013 Numerical simulation of an evaporative meniscus on a moving substrate. Eur. Phys. J. (Special Topics) 219, 2531.
Duffy, B. R. & Wilson, S. K. 1997 A third-order differential equation arising in thin-film flows and relevant to Tanner’s law. Appl. Maths Lett. 10, 6368.
Dunn, G. J., Wilson, S. K., Duffy, B. R., David, S. & Sefiane, K. 2009 The strong influence of substrate conductivity on droplet evaporation. J. Fluid Mech. 623, 329351.
Eggers, J. 2004 Hydrodynamic theory of forced dewetting. Phys. Rev. Lett. 93, 094502.
Eggers, J. & Pismen, L. M. 2010 Nonlocal description of evaporating drops. Phys. Fluids 22, 112101.
Eggers, J. & Stone, H. A. 2004 Characteristic lengths at moving contact lines for a perfectly wetting fluid: the influence of speed on the dynamic contact agle. J. Fluid Mech. 505, 309321.
de Gennes, P. G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827863.
Guéna, G., Poulard, C. & Cazabat, A. M. 2007 The leading edge of evaporating droplets. J. Colloid Interface Sci. 312, 164171.
Hervet, H. & de Gennes, P. G. 1984 Dynamique du mouillage: films précurseurs sur solide ‘sec’. C. R. Acad. Sci. Paris II 299, 499503.
Hocking, L. M. 1983 The spreading of a thin drop by gravity and capillarity. Q. J. Mech. Appl. Maths 36 (1), 5569.
Hocking, L. M. 1992 Rival contact-angle models and the spreading of drops. J. Fluid Mech. 239, 671681.
Hocking, L. M. 1995 On contact angles in evaporating liquids. Phys. Fluids 7 (12), 29502955.
Huh, C. & Scriven, L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85101.
Jambon-Puillet, E., Carrier, O., Shahidzadeh, N., Brutin, D., Eggers, J. & Bonn, D. 2018 Spreading dynamics and contact angle of completely wetting volatile drops. J. Fluid Mech. 844, 817830.
Janeček, V., Andreotti, B., Pražák, D., Bárta, T. & Nikolayev, V. S. 2013 Moving contact line of a volatile fluid. Phys. Rev. E 88, 060404.
Janeček, V., Doumenc, F., Guerrier, B. & Nikolayev, V. S. 2015 Can hydrodynamic contact line paradox be solved by evaporation–condensation? J. Colloid Interface Sci. 460, 329338.
Janeček, V. & Nikolayev, V. S. 2012 Contact line singularity at partial wetting during evaporation driven by substrate heating. Europhys. Lett. 100, 14003.
Janeček, V. & Nikolayev, V. S. 2013 Apparent-contact-angle model at partial wetting and evaporation: impact of surface forces. Phys. Rev. E 87, 012404.
Lugg, G. A. 1968 Diffusion coefficient of some organic and other vapors in air. Anal. Chem. 40 (7), 10721077.
Machrafi, H., Rednikov, A., Colinet, P. & Dauby, P. 2015 Importance of wave-number dependence of Biot numbers in one-sided models of evaporative Marangoni instability: horizontal layer and spherical droplet. Phys. Rev. E 91, 053018.
Machrafi, H., Sadoun, N., Rednikov, A., Dehaeck, S., Dauby, P. & Colinet, P. 2013 Evaporation rates and Bénard–Marangoni supercriticality levels for liquid layers under inert gas flow. Microgravity Sci. Technol. 25, 251265.
Moosman, S. & Homsy, G. M. 1980 Evaporating menisci of wetting fluids. J. Colloid Interface Sci. 73, 212223.
Morris, S. J. S. 2001 Contact angles for evaporating liquids predicted and compared with existing experiments. J. Fluid Mech. 432, 130.
Morris, S. J. S. 2014 On the contact region of a diffusion-limited evaporating drop: a local analysis. J. Fluid Mech. 739, 308337.
Oliver, J. M., Whiteley, J. P., Saxton, M. A., Vella, D., Zubkov, V. S. & King, J. R. 2015 On contact-line dynamics with mass transfer. Eur. J. Appl. Maths 26, 149.
Pham, C.-T., Berteloot, G., Lequeux, F. & Limat, L. 2010 Dynamics of complete wetting liquid under evaporation. Europhys. Lett. 92, 54005.
Pismen, L. M. & Pomeau, Y. 2000 Disjoining potential and spreading of thin liquid layers in the diffuse-interface model coupled to hydrodynamics. Phys. Rev. E 62, 24802492.
Pomeau, Y. 2011 Contact line moving on a solid. Eur. Phys. J. (Special Topics) 197, 1531.
Popov, Y. O. 2005 Evaporative deposition patterns: spatial dimensions of the deposit. Phys. Rev. E 71, 036313.
Potash, M. & Wayner, P. C. 1972 Evaporation from a two dimensional extended meniscus. Intl J. Heat Mass Transfer 15, 18511863.
Raj, R., Kunkelmann, C., Stephan, P., Plawsky, J. & Kim, J. 2012 Contact line behavior for a highly wetting fluid under superheated conditions. Intl J. Heat Mass Transfer 55, 26642675.
Rednikov, A. & Colinet, P. 2013 Singularity-free description of moving contact lines for volatile liquids. Phys. Rev. E 87, 010401.
Rednikov, A. Y. & Colinet, P. 2017 Asymptotic analysis of the contact-line microregion for a perfectly wetting volatile liquid in a pure-vapor atmosphere. Phys. Rev. Fluids 2, 124006.
Rednikov, A. Y., Rossomme, S. & Colinet, P. 2009 Steady microstructure of a contact line for a liquid on a heated surface overlaid with its pure vapor: parametric study for a classical model. Multiphase Sci. Technol. 21, 213248.
Ristenpart, W. D., Kim, P. G., Domingues, C., Wan, J. & Stone, H. A. 2007 Influence of substrate conductivity on circulation reversal in evaporating drops. Phys. Rev. Lett. 99, 234502.
Savva, N., Rednikov, A. & Colinet, P. 2017 Asymptotic analysis of the evaporation dynamics of partially-wetting droplets. J. Fluid Mech. 824, 574623.
Saxton, M. A., Whiteley, J. P., Vella, D. & Oliver, J. M. 2016 On thin evaporating drops: when is the d 2 -law valid? J. Fluid Mech. 792, 134167.
Schiaffino, S. & Sonin, A. A. 1997 On the theory for the arrest of an advancing molten contact line on a cold solid of the same material. Phys. Fluids 9 (8), 22272233.
Sibley, D. N., Nold, A., Savva, N. & Kalliadasis, S. 2013 On the moving contact line singularity: asymptotics of a diffuse-interface model. Eur. Phys. J. E 36, 26.
Snoeijer, J. H. & Andreotti, B. 2013 Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269292.
Stephan, P. C. & Busse, C. A. 1992 Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls. Intl J. Heat Mass Transfer 35, 383391.
Tsoumpas, Y., Dehaeck, S., Rednikov, A. & Colinet, P. 2015 Effect of Marangoni flows on the shape of thin sessile droplets evaporating into air. Langmuir 31, 1333413340.
Voinov, O. V. 1976 Hydrodynamics of wetting. Fluid Dyn. 11, 714721.
Wayner, P. C. 1993 Spreading of a liquid film with a finite contact angle by the evaporation/condensation process. Langmuir 9, 294299.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Contact-line singularities resolved exclusively by the Kelvin effect: volatile liquids in air

  • A. Y. Rednikov (a1) and P. Colinet (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed