## References

Agostini, L., Larcheveque, L. & Dupont, P.
2015
Mechanism of shock unsteadiness in separated shock/boundary-layer interactions. Phys. Fluids
27, 126103.

Babinsky, H. & Ogawa, H.
2008
SBLI control for wings and inlets. Shock Waves
18 (2), 89–96.

Babinsky, H., Oorebeek, J. & Cottingham, T. G.
2013
Corner effects in reflecting oblique shock-wave/boundary-layer interactions. In 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 07–10 January 2013, Grapevine, Texas, pp. 1–10. American Institute of Aeronautics and Astronautics.

Ben-Dor, G.
2007
Shock Wave Reflection Phenomena, 2nd edn. Springer.

Benek, J. A., Suchyta, C. J. III & Babinsky, H.
2013
The effect of wind tunnel size on incident shock boundary layer interaction experiments. In 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 07–10 January 2013, Grapevine, Texas, pp. 1–24. American Institute of Aeronautics and Astronautics.

Bruce, P. J. K., Burton, D. M. F., Titchener, N. A. & Babinsky, H.
2011
Corner effect and separation in transonic channel flows. J. Fluid Mech.
679, 247–262.

Burton, D. M. F. & Babinsky, H.
2012
Corner separation effects for normal shock wave/turbulent boundary layer interactions in rectangular channels. J. Fluid Mech.
707, 287–306.

Chapman, D. R., Kuehn, D. M. & Larson, H. K.1958 Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition. NACA *Tech. Rep.* 1356.

Chpoun, A., Passerel, D., Li, H. & Ben-Dor, G.
1995
Reconsideration of oblique shock wave reflections in steady flows. Part 1. Experimental investigation. J. Fluid Mech.
301, 19–35.

Délery, J.
2011
Physical introduction. In Shock Wave–Boundary-Layer Interactions, Ist edn. (ed. Babinsky, H. & Harvey, J. K.). Cambridge University Press.

Délery, J. M., Marvin, J. G. & Reshotko, E.1986 Shock-wave boundary layer interactions. *Tech. Rep.* AGARD-AG-280. North Atlantic Treaty Organization Advisory Group for Aerospace Research and Development. National Technical Information Services.

Edney, B.1968 Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock. *Tech. Rep.* FFA Report 115. Aeronautical Research Institute of Sweden, Stockholm.

Erdos, J. & Pallone, A.
1962
Shock–boundary layer interaction and flow separation. In Proceedings of the 1962 Heat Transfer and Fluid Mechanics Institute, vol. 15, pp. 239–254. Stanford University Press.

Galbraith, D. S., Turner, M. G., Orkwisr, P. D. & Weil, S. P.
2013
The effect of aspect ratio on a Mach 2.75 shock boundary layer interaction configuration. In 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 07–10 January 2013, Grapevine, Texas, pp. 1–12. American Institute of Aeronautics and Astronautics.

Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S.
2009
Low-frequency dynamics of shock-induced separation in a compression ramp interaction. J. Fluid Mech.
636, 397–425.

Henderson, L. F.
1967
The reflexion of a shock wave at a rigid wall in the presence of a boundary layer. J. Fluid Mech.
30 (4), 699–722.

Henderson, L. F. & Lozzi, A.
1975
Experiments on transition of Mach reflection. J. Fluid Mech.
68 (1), 139–155.

Hornung, H. G., Oertel, H. & Sandeman, R. J.
1979
Transition to Mach reflexion of shock waves in steady and pseudosteady flow with and without relaxation. J. Fluid Mech.
90 (3), 541–560.

Hornung, H. G. & Robinson, M. L.
1982
Transition from regular to Mach reflection of shock waves. Part 2. The steady-flow criterion. J. Fluid Mech.
123, 155–164.

Li, H. & Ben-Dor, G.
1997
A parametric study of Mach reflection in steady flows. J. Fluid Mech.
341, 101–125.

Li, H., Chpoun, A. & Ben-Dor, G.
1999
Analytical and experimental investigations of the reflection of asymmetric shock waves in steady flows. J. Fluid Mech.
390, 25–43.

Lock, G. & Dewey, J.
1989
An experimental investigation of the sonic criterion for transition from regular to Mach reflection of weak shock waves. Exp. Fluids
7 (5), 289–292.

Longley, J. P. & Greitzer, E. M.
1992
Inlet distortion effects in aircraft propulsion system integration. In AGARD, Steady and Transient Performance Prediction of Gas Turbine Engines; 18 p, pp. 1–18. National Technical Information Services.

Loth, E., Titchener, N., Babinsky, H. & Povinelli, L.
2013
Canonical normal shock wave/boundary-layer interaction flows relevant to external compression inlets. AIAA J.
51 (9), 2208–2217.

Matheis, J. & Hickel, S.
2015
On the transition between regular and irregular shock patterns of shock-wave/boundary-layer interactions. J. Fluid Mech.
776, 200–234.

von Neumann, J.1943*a* Oblique reflection of shocks. *Explosive Research Rep.* 12. Navy Department, Bureau of Ordnance.

von Neumann, J.1943*b* Refraction, intersection and reflection of shock waves. *NAVORD Rep.* 203-45. Navy Department, Bureau of Ordnance.

Ogawa, H. & Babinsky, H.
2006
Wind-tunnel setup for investigations of normal shock wave/boundary layer interaction control. AIAA J.
44 (11), 2803–2805.

Perry, A. E. & Chong, M. S.
1987
A description of eddying motions and flow patterns using critical-point concepts. Annu. Rev. Fluid Mech.
19 (1), 125–155.

Piponniau, S., Dussauge, J. P., Debieve, J. F. & Dupont, P.
2009
A simple model for low-frequency unsteadiness in shock-induced separation. J. Fluid Mech.
629, 87–108.

Rabey, P. K. & Bruce, P. J. K.
2017
Experimental study exploring unsteadiness length scales in a reflected shock–boundary layer interaction. In 55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, Grapevine, Texas, pp. 1–14. American Institute of Aeronautics and Astronautics.

Smart, M. K.
2001
Experimental testing of a hypersonic inlet with rectangular-to-elliptical shape transition. J. Propul. Power
17 (2), 276–283.

Souverein, L. J., Bakker, P. G. & Dupont, P.
2013
A scaling analysis for turbulent shock-wave/boundary-layer interactions. J. Fluid Mech.
714, 505–535.

Threadgill, J. A. S. & Bruce, P. J. K.
2016
Shock wave boundary layer interaction unsteadiness: the effects of configuration and strength. In 54th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, San Diego, CA, pp. 1–19. American Institute of Aeronautics and Astronautics.

Threadgill, J. A. S. & Bruce, P. J. K.
2017
Comparison of unsteady flow similarities in various shock/boundary-layer interaction configurations. In 55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, Grapevine, Texas, pp. 1–17. American Institute of Aeronautics and Astronautics.

Touber, E. & Sandham, N. D.
2008
Oblique shock impinging on a turbulent boundary layer: low-frequency mechanisms. In 38th Fluid Dynamics Conference and Exhibit, Seattle, Washington, pp. 1–27. American Institute of Aeronautics and Astronautics.

Touber, E. & Sandham, N. D.
2009
Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theor. Comput. Fluid Dyn.
23 (2), 79–107.

Touber, E. & Sandham, N. D.
2011
Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions. J. Fluid Mech.
671, 417–465.

Vuillon, J., Zeitoun, D. & Ben-Dor, G.
1995
Reconsideration of oblique shock wave reflections in steady flows. Part 2. Numerical investigation. J. Fluid Mech.
301, 37–50.

Wang, B., Sandham, N. D., Hu, Z. & Liu, W.
2015
Numerical study of oblique shock-wave/boundary-layer interaction considering sidewall effects. J. Fluid Mech.
767, 526–561.