Skip to main content Accessibility help
×
Home

Computations of equilibrium and non-equilibrium turbulent channel flows using a nested-LES approach

  • Yifeng Tang (a1) and Rayhaneh Akhavan (a1)

Abstract

A new nested-LES approach for computation of high Reynolds number, equilibrium, and non-equilibrium, wall-bounded turbulent flows is presented. The method couples coarse-resolution LES in the full computational domain with fine-resolution LES in a minimal flow unit to retain the accuracy of well-resolved LES throughout the computational domain, including in the near-wall region, while significantly reducing the computational cost. The two domains are coupled by renormalizing the instantaneous velocity fields in each domain dynamically during the course of the simulation to match the wall-normal profiles of single-time, ensemble-averaged kinetic energies of the components of ‘mean’ and fluctuating velocities in the inner layer to those of the minimal flow unit, and in the outer layer to those of the full domain. This simple renormalization procedure is shown to correct the energy spectra and wall shear stresses in both domains, thus leading to accurate turbulence statistics. The nested-LES approach has been applied to computation of equilibrium turbulent channel flow at $Re_{{\it\tau}}\approx 1000$ , 2000, 5000, 10 000, and non-equilibrium, strained turbulent channel flow at $Re_{{\it\tau}}\approx 2000$ . In both flows, nested-LES predicts the skin friction coefficient, first- and higher-order turbulence statistics, spectra and structure of the flow in agreement with available DNS and experimental data. Nested-LES can be applied to any flow with at least one direction of local or global homogeneity, while reducing the required number of grid points from $O(Re_{{\it\tau}}^{2})$ of conventional LES to $O(\log Re_{{\it\tau}})$ or $O(Re_{{\it\tau}})$ in flows with two or one locally or globally homogeneous directions, respectively.

Copyright

Corresponding author

Email address for correspondence: raa@umich.edu

References

Hide All
del Alamo, J. C., Jimenez, J., Zandonade, P. & Moser, R. D. 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.
Balakumar, B. J. & Adrian, R. J. 2007 Large- and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. Lond. A 365 (1852), 665681.
Balaras, E., Benocci, C. & Piomelli, U. 1996 Two-layer approximate boundary conditions for large-eddy simulations. AIAA J. 34 (6), 11111119.
Cabot, W. & Moin, P. 1999 Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow. Flow Turbul. Combust. 63 (1), 269291.
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Spectral Methods in Fluid Dynamics. Springer.
Chapman, D. R. 1979 Computational aerodynamics, development and outlook. AIAA J. 17 (12), 12931313.
Chung, D. & Pullin, D. I. 2009 Large-eddy simulation and wall modelling of turbulent channel flow. J. Fluid Mech. 631, 281309.
Coleman, G. N., Kim, J. & Le, A. T. 1996 A numerical study of three-dimensional wall-bounded flows. Intl J. Heat Fluid Flow 17 (3), 333342.
Comte-Bellot, G.1963 Turbulent flow between two parallel walls. PhD thesis, University of Grenoble.
Dean, R. B. 1978 Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. Trans. ASME J. Fluids Engng 100 (2), 215223.
Deardorff, J. W. 1970 A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41, 453480.
Driver, D. M. & Hebbar, S. K.1991 Three-dimensional turbulent boundary layer flow over a spinning cylinder. NASA Tech. Rep. TM-102240. AMES Research Center.
Flores, O. & Jimenez, J. 2010 Hierarchy of minimal flow units in the logarithmic layer. Phys. Fluids 22 (7), 071704.
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3 (7), 17601765.
Haliloglu, M. U. & Akhavan, R. 2004 A nonlinear interactions approximation model for LES. In Direct and Large-Eddy Simulation V (ed. Geurts, B., Metais, O. & Freidrich, R.), ERCOFTAC Series, vol. 9, p. 39. Kluwer.
Hoffmann, G. & Benocci, C. 1995 Approximate wall boundary conditions for large eddy simulations. In Advances in Turbulence V (ed. Benzi, R.), pp. 222228. Kluwer.
Hoyas, S. & Jimenez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to $Re_{{\it\tau}}=2003$ . Phys. Fluids 18 (1), 011702.
Hultmark, M., Vallikivi, M., Bailey, S. C. C. & Smits, A. J. 2013 Logarithmic scaling of turbulence in smooth- and rough-wall pipe flow. J. Fluid Mech. 728, 376395.
Hutchins, N. & Marusic, I. 2007 Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A 365 (1852), 647664.
Hwang, Y. Y. 2013 Near-wall turbulent fluctuations in the absence of wide outer motions. J. Fluid Mech. 723, 264288.
Jimenez, J. 2003 Computing high-Reynolds-number turbulence: will simulations ever replace experiments? J. Turbul. 4, N22.
Jimenez, J. & Hoyas, S. 2008 Turbulent fluctuations above the buffer layer of wall-bounded flows. J. Fluid Mech. 611, 215236.
Jimenez, J., Hoyas, S., Simens, M. P. & Mizuno, Y. 2010 Turbulent boundary layers and channels at moderate Reynolds numbers. J. Fluid Mech. 657, 335360.
Jimenez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.
Kannepalli, C. & Piomelli, U. 2000 Large-eddy simulation of a three-dimensional shear-driven turbulent boundary layer. J. Fluid Mech. 423, 175203.
Kemenov, K. & Menon, S.2003 Two level simulation of high-Reynolds number non-homogeneous turbulent flows. AIAA Paper 2003-0084.
Knaepen, B., Debliquy, O. & Carati, D. 2002 Subgrid-scale energy and pseudo pressure in large-eddy simulation. Phys. Fluids 14 (12), 42354241.
Kosloff, D. & Talezer, H. 1993 A modified Chebyshev pseudospectral method with an $O(1/N)$ time step restriction. J. Comput. Phys. 104 (2), 457469.
Kravchenko, A. G., Moin, P. & Moser, R. 1996 Zonal embedded grids for numerical simulations of wall-bounded turbulent flows. J. Comput. Phys. 127 (2), 412423.
Lee, M. & Moser, R. D. 2015 Direct numerical simulation of turbulent channel flow up to $Re_{{\it\tau}}\approx 5200$ . J. Fluid Mech. 774, 395415.
Lilly, D. K. 1992 A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4 (3), 633635.
Marusic, I. & Heuer, W. D. C. 2007 Reynolds number invariance of the structure inclination angle in wall turbulence. Phys. Rev. Lett. 99 (11), 114504.
Marusic, I., Mathis, R. & Hutchins, N. 2010a Predictive model for wall-bounded turbulent flow. Science 329 (5988), 193196.
Marusic, I., Mckeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits, A. J. & Sreenivasan, K. R. 2010b Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22 (6), 065103.
Marusic, I., Monty, J. P., Hultmark, M. & Smits, A. J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.
Mathis, R., Hutchins, N. & Marusic, I. 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.
Mathis, R., Hutchins, N. & Marusic, I. 2011 A predictive inner-outer model for streamwise turbulence statistics in wall-bounded flows. J. Fluid Mech. 681, 537566.
Meneveau, C. & Marusic, I. 2013 Generalized logarithmic law for high-order moments in turbulent boundary layers. J. Fluid Mech. 719, R1.
Menter, F. R. & Egorov, Y.2005 A scale-adaptive simulation model using two-equation models. AIAA Paper 2005-1095.
Meyers, J. & Baelmans, M. 2004 Determination of subfilter energy in large-eddy simulations. J. Turbul. 5, N26.
Nikitin, N. V., Nicoud, F., Wasistho, B., Squires, K. D. & Spalart, P. R. 2000 An approach to wall modeling in large-eddy simulations. Phys. Fluids 12 (7), 16291632.
Orszag, S. A. 1980 Spectral methods for problems in complex geometries. J. Comput. Phys. 37 (1), 7092.
Pao, Y. H. 1965 Structure of turbulent velocity and scalar fields at large wavenumbers. Phys. Fluids 8 (6), 10631075.
Perry, A. E., Henbest, S. & Chong, M. S. 1986 A theoretical and experimental-study of wall turbulence. J. Fluid Mech. 165, 163199.
Piomelli, U. 2008 Wall-layer models for large-eddy simulations. Prog. Aerosp. Sci. 44 (6), 437446.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.
Sagaut, P. & Deck, S. 2009 Large eddy simulation for aerodynamics: status and perspectives. Phil. Trans. R. Soc. Lond. A 367 (1899), 28492860.
Sagaut, P. & Meneveau, C. 2006 Large Eddy Simulation for Incompressible Flows: An Introduction, 3rd edn. Springer.
Schlatter, P., Li, Q., Brethouwer, G., Johansson, A. V. & Henningson, D. S. 2010 Simulations of spatially evolving turbulent boundary layers up to $Re_{{\it\theta}}=4300$ . Intl J. Heat Fluid Flow 31 (3), 251261.
Schumann, U. 1975 Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18 (4), 376404.
Shur, M. L., Spalart, P. R., Strelets, M. K. & Travin, A. K. 2008 A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Intl J. Heat Fluid Flow 29 (6), 16381649.
Sillero, J. A., Jimenez, J. & Moser, R. D. 2014 Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to ${\it\delta}^{+}\approx 2000$ . Phys. Fluids 26 (10), 105109.
Smits, A. J., Mckeon, B. J. & Marusic, I. 2011 High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.
Spalart, P. R., Jou, W.-H., Strelets, M. & Allmaras, S. R. 1997 Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In Advances in DNS/LES (ed. Liu, C., Liu, Z. & Sakell, L.), pp. 137147. Greyden.
Stevens, R. J. A. M., Wilczek, M. & Meneveau, C. 2014 Large-eddy simulation study of the logarithmic law for second- and higher-order moments in turbulent wall-bounded flow. J. Fluid Mech. 757, 888907.
Talluru, K. M., Baidya, R., Hutchins, N. & Marusic, I. 2014 Amplitude modulation of all three velocity components in turbulent boundary layers. J. Fluid Mech. 746, R1.
Tang, Y.2015 A nested-LES approach for computation of high Reynolds number, equilibrium and non-equilibrium turbulent wall-bounded flows. PhD thesis, University of Michigan.
Tang, Y. & Akhavan, R. 2009 Recovery of subgrid-scale turbulence kinetic energy in LES of channel flow. In Advances in Turbulence XII (ed. Eckhardt, B.), Springer Proceedings in Physics, vol. 132, p. 949. Springer.
Townsend, A. A. 1958 The turbulent boundary layer. In Boundary Layer Research (ed. Görtler, H.), pp. 115. Springer.
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.
Voelkl, T., Pullin, D. I. & Chan, D. C. 2000 A physical-space version of the stretched-vortex subgrid-stress model for large-eddy simulation. Phys. Fluids 12 (7), 18101825.
Winckelmans, G. S., Jeanmart, H. & Carati, D. 2002 On the comparison of turbulence intensities from large-eddy simulation with those from experiment or direct numerical simulation. Phys. Fluids 14 (5), 18091811.
Wu, Y. & Christensen, K. T. 2010 Spatial structure of a turbulent boundary layer with irregular surface roughness. J. Fluid Mech. 655, 380418.
Yakhot, A., Orszag, S. A., Yakhot, V. & Israeli, M. 1989 Renormalization group formulation of large-eddy simulations. J. Sci. Comput. 4 (2), 139158.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Computations of equilibrium and non-equilibrium turbulent channel flows using a nested-LES approach

  • Yifeng Tang (a1) and Rayhaneh Akhavan (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed