## References

Argatov, I. I.2011 Electrical contact resistance, thermal contact conductance and elastic incremental stiffness for a cluster of microcontacts: asymptotic modelling. Q. J. Mech. Appl. Maths 64 (1), 1–24.

Brutin, D. & Starov, V.2018 Recent advances in droplet wetting and evaporation. Chem. Soc. Rev. 47 (2), 558–585.

Carrier, O., Shahidzadeh-Bonn, N., Zargar, R., Aytouna, M., Habibi, M., Eggers, J. & Bonn, D.2016 Evaporation of water: evaporation rate and collective effects. J. Fluid Mech. 798, 774–786.

Castanet, G., Perrin, L., Caballina, O. & Lemoine, F.2016 Evaporation of closely-spaced interacting droplets arranged in a single row. Intl J. Heat Mass Transfer 93, 788–802.

Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. & Witten, T. A.1997 Capillary flow as the cause of ring stains from dried liquid drops. Nature 389 (6653), 827–829.

Dollet, B. & Lohse, D.2016 Pinning stabilizes neighboring surface nanobubbles against Ostwald ripening. Langmuir 32 (43), 11335–11339.

Dunn, G. J., Wilson, S. K., Duffy, B. R., David, S. & Sefiane, K.2008 A mathematical model for the evaporation of a thin sessile liquid droplet: comparison between experiment and theory. Colloids Surf. A 323 (1–3), 50–55.

Dunn, G. J., Wilson, S. K., Duffy, B. R., David, S. & Sefiane, K.2009 The strong influence of substrate conductivity on droplet evaporation. J. Fluid Mech. 623, 329–351.

Fabrikant, V. I.1985 On the potential flow through membranes. Z. Angew. Math. Phys. 36 (4), 616–623.

Giorgiutti-Dauphiné, F. & Pauchard, L.2018 Drying drops. Eur. Phys. J. E 41, 32.

Hatte, S., Pandey, K., Pandey, K., Chakraborty, S. & Basu, S.2019 Universal evaporation dynamics of ordered arrays of sessile droplets. J. Fluid Mech. 866, 61–81.

Jackson, J. D.1999 Classical Electrodynamics, 3rd edn. Wiley.

Khilifi, D., Foudhil, W., Fahem, K., Harmand, S. & Ben Jabrallah, S.2019 Study of the phenomenon of the interaction between sessile drops during evaporation. Thermal Sci. 23 (2B), 1105–1114.

Kobayashi, I.1939 Das elektrostatische Potential um zwei auf derselben Ebene liegende und sich nicht schneidende gleichgrosse Kreisscheiben. Sci. Rep. Tōhoku Imp. Univ. 1st Ser. Maths, Phys., Chem. 27, 365–391.

Kokalj, T., Cho, H., Jenko, M. & Lee, L. P.2010 Biologically inspired porous cooling membrane using arrayed-droplets evaporation. Appl. Phys. Lett. 96 (16), 163703.

Lacasta, A. M., Sokolov, I. M., Sancho, J. M. & Sagués, F.1998 Competitive evaporation in arrays of droplets. Phys. Rev. E 57 (5), 6198–6201.

Laghezza, G., Dietrich, E., Yeomans, J. M., Ledesma-Aguilar, R., Kooij, E. S., Zandvliet, H. J. W. & Lohse, D.2016 Collective and convective effects compete in patterns of dissolving surface droplets. Soft Matt. 12 (26), 5787–5796.

Larson, R. G.2014 Transport and deposition patterns in drying sessile droplets. AIChE J. 60 (5), 1538–1571.

Lebedev, N. N.1965 Special Functions and their Applications. Prentice-Hall.

Lee, C. C. & Chien, D. H.1994 Electrostatics and thermostatics: a connection between Electrical and Mechanical Engineering. Intl J. Engng Ed. 10 (5), 434–449.

Lohse, D. & Zhang, X.2015 Surface nanobubbles and nanodroplets. Rev. Mod. Phys. 87 (3), 981–1035.

Michelin, S., Guérin, E. & Lauga, E.2018 Collective dissolution of microbubbles. Phys. Rev. Fluids 3 (4), 043601.

Monteith, J. L. & Unsworth, M. H.2013 Principles of Environmental Physics, 4th edn. Elsevier.

Picknett, R. G. & Bexon, R.1977 The evaporation of sessile or pendant drops in still air. J. Colloid Interface Sci. 61 (2), 336–350.

Popov, Y. O.2005 Evaporative deposition patterns: spatial dimensions of the deposit. Phys. Rev. E 71 (3), 036313.

Qian, J., Arends, G. F. & Zhang, X.2019 Surface nanodroplets: formation, dissolution, and applications. Langmuir 35 (39), 12583–12596.

Raznjevic, K.1995 Handbook of Thermodynamic Tables. Begell House.

Routh, A. F.2013 Drying of thin colloidal films. Rep. Prog. Phys. 76 (4), 046603.

Sáenz, P. J., Sefiane, K., Kim, J., Matar, O. K. & Valluri, P.2015 Evaporation of sessile drops: a three-dimensional approach. J. Fluid Mech. 772, 705–739.

Sáenz, P. J., Wray, A. W., Che, Z., Matar, O. K., Valluri, P., Kim, J. & Sefiane, K.2017 Dynamics and universal scaling law in geometrically-controlled sessile drop evaporation. Nat. Commun. 8, 14783.

Schäfle, C., Bechinger, C., Rinn, B., David, C. & Leiderer, P.1999 Cooperative evaporation in ordered arrays of volatile droplets. Phys. Rev. Lett. 83 (25), 5302–5305.

Schofield, F. G. H., Wilson, S. K., Pritchard, D. & Sefiane, K.2018 The lifetimes of evaporating sessile droplets are significantly extended by strong thermal effects. J. Fluid Mech. 851, 231–244.

Schofield, F. G. H., Wray, A. W., Pritchard, D. & Wilson, S. K.2020 The shielding effect extends the lifetimes of two-dimensional sessile droplets. *J. Engng Maths* (to appear).

Shaikeea, A., Basu, S., Hatte, S. & Bansal, L.2016 Insights into vapor-mediated interactions in a nanocolloidal droplet system: evaporation dynamics and affects on self-assembly topologies on macro- to microscales. Langmuir 32 (40), 10334–10343.

Shaikeea, A. J. D. & Basu, S.2016a Evaporating sessile droplet pair: insights into contact line motion, flow transitions and emergence of universal vaporisation pattern. Appl. Phys. Lett. 108 (24), 244102.

Shaikeea, A. J. D. & Basu, S.2016b Insight into the evaporation dynamics of a pair of sessile droplets on a hydrophobic substrate. Langmuir 32 (5), 1309–1318.

Sneddon, I. N.1966 Mixed Boundary Value Problems in Potential Theory. North-Holland.

Sokuler, M., Auernhammer, G. K., Liu, C. J., Bonaccurso, E. & Butt, H.-J.2010 Dynamics of condensation and evaporation: effect of inter-drop spacing. Europhys. Lett. 89 (3), 36004.

Stauber, J. M., Wilson, S. K., Duffy, B. R. & Sefiane, K.2014 On the lifetimes of evaporating droplets. J. Fluid Mech. 744, R2.

Stauber, J. M., Wilson, S. K., Duffy, B. R. & Sefiane, K.2015 On the lifetimes of evaporating droplets with related initial and receding contact angles. Phys. Fluids 27 (12), 122101.

Sultan, E., Boudaoud, A. & Ben Amar, M.2005 Evaporation of a thin film: diffusion of the vapour and Marangoni instabilities. J. Fluid Mech. 543, 183–202.

Weber, H.1873 Über die Besselschen Functionen und ihre Anwendung auf die Theorie der elektrischen Ströme. J. Reine Angew. Math. 75, 75–105.

Weijs, J. H., Seddon, J. R. T. & Lohse, D.2012 Diffusive shielding stabilizes bulk nanobubble clusters. Chem. Phys. Chem. 13 (8), 2197–2204.

Weijs, J. H. & Lohse, D.2013 Why surface nanobubbles live for hours. Phys. Rev. Lett. 110 (5), 054501.

Xie, Q. & Harting, J.2019 The effect of the liquid layer thickness on the dissolution of immersed surface droplets. Soft Matt. 15 (32), 6461–6468.

Zhu, X., Verzicco, R., Zhang, X. & Lohse, D.2018 Diffusive interaction of multiple surface nanobubbles: shrinkage, growth, and coarsening. Soft Matt. 14 (11), 2006–2014.