Alboussière, T., Uspenski, V. & Moreau, R.
1999
Quasi-2D MHD turbulent shear layers. Exp. Therm. Fluid Sci.
20 (1), 19–24.

Ali, M. S. M., Doolan, C. J. & Wheatley, V.
2009
Grid convergence study for a two-dimensional simulation of flow around a square cylinder at a low Reynolds number. In Seventh International Conference on CFD in The Minerals and Process Industries (ed. Witt, P. J. & Schwarz, M. P.), pp. 1–6. CSIRO.

Baker, N. T., Pothérat, A. & Davoust, L.
2015
Dimensionality, secondary flows and helicity in low-
$Rm$
MHD vortices. J. Fluid Mech.
779, 325–350.
Barleon, L., Mack, K.-J. & Stieglitz, R.1996 The MEKKA-facility a flexible tool to investigate MHD-flow phenomena. *Tech. Rep.* ZKA 5821. Institute of Applied Thermo- and Fluid Dynamics, Research Centre Karlsruhe.

Beskok, A., Raisee, M., Celik, B., Yagiz, B. & Cheraghi, M.
2012
Heat transfer enhancement in a straight channel via a rotationally oscillating adiabatic cylinder. Intl J. Therm. Sci.
58, 61–69.

Branover, H., Eidelman, A. & Nagorny, M.
1995
Use of turbulence modification for heat transfer enhancement in liquid metal blankets. Fusion Engng Des.
27, 719–724.

Brouillette, E. C. & Lykoudis, P. S.
1967
Magneto-fluid-mechanic channel flow. I. Experiment. Phys. Fluids
10 (5), 995–1001.

Bühler, L.
1996
Instabilities in quasi-two-dimensional magnetohydrodynamic flows. J. Fluid Mech.
326, 125–150.

Burr, U., Barleon, L., Müller, U. & Tsinober, A.
2000
Turbulent transport of momentum and heat in magnetohydrodynamic rectangular duct flow with strong sidewall jets. J. Fluid Mech.
406, 247–279.

Cassells, O. G. W., Hussam, W. K. & Sheard, G. J.
2016
Heat transfer enhancement using rectangular vortex promoters in confined quasi-two-dimensional magnetohydrodynamic flows. Intl J. Heat Mass Transfer
93, 186–199.

Celik, B., Akdag, U., Gunes, S. & Beskok, A.
2008
Flow past an oscillating circular cylinder in a channel with an upstream splitter plate. Phys. Fluids
20, 103603.

Celik, B., Raisee, M. & Beskok, A.
2010
Heat transfer enhancement in a slot channel via a transversely oscillating adiabatic circular cylinder. Intl J. Heat Mass Transfer
53, 626–634.

Cuevas, S., Picologlou, B. F., Walker, J. S., Talmage, G. & Hua, T. Q.
1997
Heat transfer in laminar and turbulent liquid-metal MHD flows in square ducts with thin conducting or insulating walls. Intl J. Engng Sci.
35 (5), 505–514.

Davidson, P. A.
2001
An Introduction to Magnetohydrodynamics, vol. 25. Cambridge University Press.

Frank, M., Barleon, L. & Müller, U.
2001
Visual analysis of two-dimensional magnetohydrodynamics. Phys. Fluids
13, 2287–2295.

Fu, Wu-Shung & Tong, Bao-Hong
2004
Numerical investigation of heat transfer characteristics of the heated blocks in the channel with a transversely oscillating cylinder. Intl J. Heat Mass Transfer
47, 341–351.

Gardner, R. A. & Lykoudis, P. S.
1971
Magneto-fluid-mechanic pipe flow in a transverse magnetic field Part 2. Heat transfer. J. Fluid Mech.
48 (1), 129–141.

Griffin, O. M. & Ramberg, S. E.
1976
Vortex shedding from a cylinder vibrating in line with an incident uniform flow. J. Fluid Mech.
75 (2), 257–271.

Hamid, A. H. A., Hussam, W. K., Pothérat, A. & Sheard, G. J.
2015
Spatial evolution of a quasi-two-dimensional Kármán vortex street subjected to a strong uniform magnetic field. Phys. Fluids
27, 053602.

Hartmann, J. & Lazarus, F.
1937
Hg-dynamics II: experimental investigations on the flow of mercury in a homogeneous magnetic field. Math.-fys. Med.
15 (7), 1–45.

Hunt, J. C. R.
1965
Magnetohydrodynamic flow in rectangular ducts. J. Fluid Mech.
21 (4), 577–590.

Hunt, J. C. R. & Malcolm, D. G.
1968
Some electrically driven flows in magnetohydrodynamics Part 2. Theory and experiment. J. Fluid Mech.
33 (04), 775–801.

Hussam, W. K. & Sheard, G. J.
2013
Heat transfer in a high Hartmann number MHD duct flow with a circular cylinder placed near the heated side-wall. Intl J. Heat Mass Transfer
67, 944–954.

Hussam, W. K., Thompson, M. C. & Sheard, G. J.
2011
Dynamics and heat transfer in a quasi-two-dimensional MHD flow past a circular cylinder in a duct at high Hartmann number. Intl J. Heat Mass Transfer
54, 1091–1100.

Hussam, W. K., Thompson, M. C. & Sheard, G. J.
2012a
Enhancing heat transfer in a high Hartmann number magnetohydrodynamic channel flow via torsional oscillation of a cylindrical obstacle. Phys. Fluids
24, 113601.

Hussam, W. K., Thompson, M. C. & Sheard, G. J.
2012b
Optimal transient disturbances behind a circular cylinder in a quasi-two-dimensional magnetohydrodynamic duct flow. Phys. Fluids
24, 024105.

Kanaris, N., Albets, X., Grigoriadis, D. & Kassinos, S.
2013
Three-dimensional numerical simulations of magnetohydrodynamic flow around a confined circular cylinder under low, moderate, and strong magnetic fields. Phys. Fluids
25, 074102.

Karniadakis, G. E. & Triantafyllou, G. S.
1989
Frequency selection and asymptotic states in laminar wakes. J. Fluid Mech.
199, 441–469.

Kieft, R. N., Rindt, C. C. M., Van Steenhoven, A. A. & Van Heijst, G. J. F.
2003
On the wake structure behind a heated horizontal cylinder in cross-flow. J. Fluid Mech.
486, 189–211.

Klein, R., Pothérat, A. & Alferenok, A.
2009
Experiment on a confined electrically driven vortex pair. Phys. Rev. E
79, 016304.

Kolesnikov, Y. B. & Andreev, O. V.
1997
Heat-transfer intensification promoted by vortical structures in closed channel under magnetic field. Exp. Therm. Fluid Sci.
15, 82–90.

Koopmann, G. H.
1967
The vortex wakes of vibrating cylinders at low Reynolds numbers. J. Fluid Mech.
28 (3), 501–512.

Krasnov, D., Zikanov, O. & Boeck, T.
2012
Numerical study of magnetohydrodynamic duct flow at high Reynolds and Hartmann numbers. J. Fluid Mech.
704, 421–446.

Lahjomri, J., Capéran, Ph. & Alemany, A.
1993
The cylinder wake in a magnetic field aligned with the velocity. J. Fluid Mech.
253, 421–448.

Lam, K. M.
2009
Vortex shedding flow behind a slowly rotating circular cylinder. J. Fluids Struct.
25, 245–262.

Lundquist, S.
1949
Experimental investigations of magneto-hydrodynamic waves. Phys. Rev.
76 (12), 1805–1809.

Lyon, R. N.
1952
Liquid-Metals Handbook, 2nd edn. Navexos P-733.

Mahfouz, F. M. & Badr, H. M.
2000
Forced convection from a rotationally oscillating cylinder placed in a uniform stream. Intl J. Heat Mass Transfer
43, 3093–3104.

Malang, S. & Tillack, M. S.1995 Development of self-cooled liquid metal breeder blankets. *Tech. Rep.* FZKA 5581. Forschungszentrum Karlsruhe GmbH Karlsruhe.

Miyazaki, K., Inoue, H., Kimoto, T., Yamashita, S., Inoue, S. & Yamaoka, N.
1986
Heat transfer and temperature fluctuation of lithium flowing under transverse magnetic field. J. Nucl. Sci. Technol.
23 (7), 582–593.

Molokov, S.1994 Liquid metal flows in manifolds and expansions of insulating rectangular ducts in the plane perpendicular to a strong magnetic field. *Tech. Rep.* KfK 5272. Kernforschungszentrum Karlsruhe GmbH Karlsruhe.

Morley, N. B., Burris, J., Cadwallader, L. C. & Nornberg, M. D.
2008
GaInSn usage in the research laboratory. Rev. Sci. Instrum.
79, 056107.

Mück, B., Günther, C., Müller, U. & Bühler, L.
2000
Three-dimensional MHD flows in rectangular ducts with internal obstacles. J. Fluid Mech.
418 (1), 265–295.

Müller, U. & Bühler, L.
2001
Magnetofluiddynamics in Channels and Containers. Springer.

Neild, A., Ng, T. W., Sheard, G. J., Powers, M. & Oberti, S.
2010
Swirl mixing at microfluidic junctions due to low frequency side channel fluidic perturbations. Sensors Actuators
150, 811–818.

Polyanin, A. D.
2001
Handbook of Linear Partial Differential Equations for Engineers and Scientists. Chapman & Hall/CRC.

Pothérat, A.
2007
Quasi-two-dimensional perturbations in duct flows under transverse magnetic field. Phys. Fluids
19, 074104.

Pothérat, A. & Klein, R.
2014
Why, how and when MHD turbulence at low
$Rm$
becomes three-dimensional. J. Fluid Mech.
761, 168–205.
Pothérat, A. & Kornet, K.
2015
The decay of wall-bounded MHD turbulence at low. J. Fluid Mech.
783, 605–636.

Pothérat, A. & Schweitzer, J.-P.
2011
A shallow water model for magnetohydrodynamic flows with turbulent Hartmann layers. Phys. Fluids
23 (5), 055108.

Pothérat, A., Sommeria, J. & Moreau, R.
2000
An effective two-dimensional model for MHD flows with transverse magnetic field. J. Fluid Mech.
424, 75–100.

Pothérat, A., Sommeria, J. & Moreau, R.
2002
Effective boundary conditions for magnetohydrodynamic flows with thin Hartmann layers. Phys. Fluids
14, 403–410.

Pothérat, A., Sommeria, J. & Moreau, R.
2005
Numerical simulations of an effective two-dimensional model for flows with a transverse magnetic field. J. Fluid Mech.
534, 115–143.

Rhoads, J. R., Edlund, E. M. & Ji, H.
2014
Effects of magnetic field on the turbulent wake of a cylinder in free-surface magnetohydrodynamic channel flow. J. Fluid Mech.
742, 446–465.

Roberts, P. H.
1967
An Introduction to Magnetohydrodynamics. Longmans.

Shatrov, V. & Gerbeth, G.
2010
Marginal turbulent magnetohydrodynamic flow in a square duct. Phys. Fluids
22 (8), 084101.

Sheard, G. J.
2011
Wake stability features behind a square cylinder: focus on small incidence angles. J. Fluids Struct.
27, 734–742.

Shercliff, J. A.
1953
Steady motion of conducting fluids in pipes under transverse magnetic fields. Math. Proc. Cambridge
49, 136–144.

Smolentsev, S & Moreau, R
2007
One-equation model for quasi-two-dimensional turbulent magnetohydrodynamic flows. Phys. Fluids
19, 078101.

Smolentsev, S., Vetcha, N. & Moreau, R.
2012
Study of instabilities and transitions for a family of quasi-two-dimensional magnetohydrodynamic flows based on a parametrical model. Phys. Fluids
24, 024101.

Smolentsev, S., Wong, C., Malang, S., Dagher, M. & Abdou, M.
2010
MHD considerations for the DCLL inboard blanket and access ducts. Fusion Engng Des.
85 (7), 1007–1011.

Sommeria, J.
1986
Experimental study of the two-dimensional inverse energy cascade in a square box. J. Fluid Mech.
170, 139–168.

Sommeria, J.
1988
Electrically driven vortices in a strong magnetic field. J. Fluid Mech.
189, 553–569.

Sommeria, J. & Moreau, R.
1982
Why, how, and when, MHD turbulence becomes two-dimensional. J. Fluid Mech.
118, 507–518.

Sukoriansky, S., Klaiman, D., Branover, H. & Greenspan, E.
1989
MHD enhancement of heat transfer and its relevance to fusion reactor blanket design. Fusion Engng Des.
8, 277–282.

Takahashi, M., Aritomi, M., Inoue, A. & Matsuzaki, M.
1998
MHD pressure drop and heat transfer of lithium single-phase flow in a rectangular channel under transverse magnetic field. Fusion Engng Des.
42, 365–372.

Walsh, M. J. & Weinstein, L. M.
1979
Drag and heat-transfer characteristics of small longitudinally ribbed surfaces. AIAA J.
17 (7), 770–771.

Yang, S.-J.
2003
Numerical study of heat transfer enhancement in a channel flow using an oscillating vortex generator. Heat Mass Transfer
39, 257–265.