Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T13:56:04.445Z Has data issue: false hasContentIssue false

Collapsible tube model for the dynamics of closure of the mitral valve

Published online by Cambridge University Press:  20 April 2006

M. Bitbol
Affiliation:
Laboratoire de Biorhéologie et d'Hydrodynamique Physiologique, E.R.A. CNRS 662, Université Paris VII – T. 33/34, 2, Place Jussieu 75251 Paris Cedex 05
Ph. Dantan
Affiliation:
Laboratoire de Biorhéologie et d'Hydrodynamique Physiologique, E.R.A. CNRS 662, Université Paris VII – T. 33/34, 2, Place Jussieu 75251 Paris Cedex 05
P. Perrot
Affiliation:
Laboratoire de Biorhéologie et d'Hydrodynamique Physiologique, E.R.A. CNRS 662, Université Paris VII – T. 33/34, 2, Place Jussieu 75251 Paris Cedex 05
C. Oddou
Affiliation:
Laboratoire de Biorhéologie et d'Hydrodynamique Physiologique, E.R.A. CNRS 662, Université Paris VII – T. 33/34, 2, Place Jussieu 75251 Paris Cedex 05

Abstract

The fluid mechanics of the closure motion of a short collapsible tube segment, subject to a strong flow deceleration as in one of Henderson & Johnson's (1912) experiments, is investigated experimentally and theoretically. Physical similarity to the closure process of the mitral valve is obtained. In the study particular emphasis is placed upon the evolution of the longitudinal profiles of the collapsible tube during its closure motion. It is found that the flexible tube first closes near its upstream end and that this first phase is followed by a propagation process toward the downstream end. The characteristics of this typical sequence and of the longitudinal shape of the collapsible tube are related to hydrodynamic parameters. The results predicted by the theory agree consistently with those obtained from the experiments.

Type
Research Article
Copyright
© 1972 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Bellhouse, B. J. 1972 The fluid mechanics of heart valves. In Cardiovascular Fluid Dynamics (ed. D. H. Bergel), vol. 2, p. 261. Academic.
Bellhouse, B. J. & Talbot, L. 1969 The fluid mechanics of the aortic valve. J. Fluid Mech. 35, 721.Google Scholar
Bellman, R., Cherry, I. & Wing, G. M. 1958 A note on the numerical integration of a class of nonlinear hyperbolic equations. Quart. J. Appl. Math. 16, 181.Google Scholar
Bitbol, M. 1980 Modèle hydromécanique de la dynamique de la valve cardiaque. Thèse de 3ème cycle, Université Paris VI.
Bitbol, M., Dantan, Ph., Perrot, P., Brun, P. & Oddou, C. 1979 Modèle de l'interaction entre écoulement instationnaire et tuyau collabable court: application à la dynamique de la valve mitrale. Presented at 4ème Congrès de la Société de Biomécanique, Lille.
Brun, Ph., Oddou, C., Kulas, A. & Laurent, F. 1977 Small computer development of echographic information related to left ventricle and mitral valve in diastole. Computers in cardiology 1977, p. 267.Google Scholar
Brun, Ph., Oddou, C., Dantan, Ph., Laporte, J. P., Laurent, F. & Perrot, P. 1980 Blood flow dynamics during the human left ventricular filling phase. In Cardiac Dynamics (ed. J. Baan, A. C. Arntzenius & E. L. Yellin), pp. 169181. The Hague: Martinus Nijhoff.
Flaherty, J. E., Keller, J. B. & Rubinow, S. I. 1972 Post buckling behaviour of elastic tubes and rings with opposite sides in contact. SIAM J. Appl. Mech. 23 (4), 446.Google Scholar
Gillani, N. V. 1974 Time dependent laminar incompressible flow through a spherical cavity. D.Sc. dissertation, Washington University.
Gillani, N. V. & Swanson, W. M. 1976 Time dependent laminar incompressible flow through a spherical cavity. J. Fluid Mech. 78, 99.Google Scholar
Henderson, Y. & Johnson, F. E. 1912 Two modes of the closure of the heart valves. Heart 4, 69.Google Scholar
Laniado, S. & Yellin, E. L. 1976 Simultaneous recording of mitral valve echogram and transmitral flow. In The Mitral Valve (ed. D. Kalmanson), pp. 155162. Edward Arnold.
Lee, C. S. F. & Talbot, L. 1979 A fluid mechanical study of the closure of heart valves. J. Fluid Mech. 91, 41.Google Scholar
Oddou, C., Dantan, P., Flaud, P. & Geiger, D. 1979 Aspects of hydrodynamics in cardiovascular research. In Quantitative Cardiovascular Studies (ed. N. H. C. Hwang, D. R. Gross & D. J. Patel), pp. 457492. Baltimore: University Park Press.
Pedley, T. J. 1980 Fluid Mechanics of Large Blood Vessels. Cambridge University Press.
Peskin, C. 1977 Numerical analysis of blood flow in the heart. J. Computer Phys. 25, 220.Google Scholar
Reul, H. & Talukder, N. 1979 Heart valve mechanics. In Quantitative Cardiovascular Studies (ed. N. H. C. Hwang, D. R. Gross & D. J. Patel), pp. 527564. Baltimore: University Park Press.
Ribreau, C. & Bonis, M. 1978 Propagation et écoulement dans les tubes collabables. Contribution à l’étude des vaisseaux sanguins. J. Fr. Biophys. & Med. Nucl. 3, 153158.Google Scholar
Roache, P. J. 1972 Computational Fluid Dynamics, 2nd edn. Hermosa.
Shapiro, A. H. 1977 Steady flow in collapsible tubes. Trans. A.S.M.E. K, J. Biomech. Engng, 99, 126147.Google Scholar
Van Steenhoven, A. A. & Van Dongen, M. E. H. 1979 Model studies of the closing behaviour of the aortic valve. J. Fluid Mech. 90, 21.Google Scholar
Vogel, J. A., Roelandt, J., Bom, N., Zeelenberg, C., Verbeek, P. W. & Bayer, T. 1978 Graphic presentation of two-dimensional cardiac structures in motion. In Computers in Cardiology, pp. 381388. I.E.E.E. Computer Society.
Vogel, J. A., Bastiaans, O. L., Roelandt, J. & Honkoop, J. 1979 Structure recognition and data extraction in two-dimensional echocardiography. Echocardiology (ed. C. T. Lancee), pp. 457567. The Hague: Martinus Nijhoff.
Yacoub, M. 1976 Anatomy of the mitral valve, chordae and cusps. In The Mitral Valve (ed. D. Kalmanson), pp. 1532. Edward Arnold.
Yellin, E. L., Frater, W. M., Peskin, C. & Laniado, S. 1976 Left ventricular flow patterns and mitral valve motion: animal studies and computer analysis. Proc. 4th New England Bioengineering Conf. (ed. S. Saha), pp. 177180. Pergamon.