Skip to main content Accessibility help
×
×
Home

Coherent structures in wall-bounded turbulence

  • Javier Jiménez (a1) (a2)
Abstract

This article discusses the description of wall-bounded turbulence as a deterministic high-dimensional dynamical system of interacting coherent structures, defined as eddies with enough internal dynamics to behave relatively autonomously from any remaining incoherent part of the flow. The guiding principle is that randomness is not a property, but a methodological choice of what to ignore in the flow, and that a complete understanding of turbulence, including the possibility of control, requires that it be kept to a minimum. After briefly reviewing the underlying low-order statistics of flows at moderate Reynolds numbers, the article examines what two-point statistics imply for the decomposition of the flow into individual eddies. Intense eddies are examined next, including their temporal evolution, and shown to satisfy many of the properties required for coherence. In particular, it is shown that coherent structures larger than the Corrsin scale are a natural consequence of the shear. In wall-bounded turbulence, they can be classified into coherent dispersive waves and transient bursts. The former are found in the viscous layer near the wall, and as very large structures spanning the entire boundary layer. Although they are shear-driven, these waves have enough internal structure to maintain a uniform advection velocity. Conversely, bursts exist at all scales, are characteristic of the logarithmic layer, and interact almost linearly with the shear. While the waves require a wall to determine their length scale, the bursts are essentially independent from it. The article concludes with a brief review of our present theoretical understanding of turbulent structures, and with a list of open problems and future perspectives.

Chance is the name we give to what we choose to ignore (Voltaire)

Copyright
Corresponding author
Email address for correspondence: jimenez@torroja.dmt.upm.es
References
Hide All
Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301.
Adrian, R. J., Meinhart, C. D. & Tomkins, C. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.
Adrian, R. J. & Moin, P. 1988 Stochastic estimation of organized turbulent structure: homogeneous shear flow. J. Fluid Mech. 190, 531559.
del Álamo, J. C. & Jiménez, J. 2006 Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205213.
del Álamo, J. C. & Jiménez, J. 2009 Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 640, 526.
del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.
del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2006 Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561, 329358.
Antonia, R. A. & Atkinson, J. D. 1973 High-order moments of Reynolds shear stress fluctuations in a turbulent boundary layer. J. Fluid Mech. 58, 581593.
Arnold, V. I. 1983 Geometric Methods in the Theory of Ordinary Differential Equations. Springer.
Bak, P., Tang, C. & Wiesenfeld, K. 1987 Self-organized criticality. Phys. Rev. A 38, 364374.
Bergé, P., Pomeau, Y. & Vidal, C. 1984 Order within Chaos: Towards a Deterministic Approach to Turbulence. Wiley-Interscience.
Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539575.
Betchov, R. 1956 An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech. 1, 497504.
Brown, G. L. & Roshko, A. 1974 On the density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775816.
Butler, K. M. & Farrell, B. F. 1993 Optimal perturbations and streak spacing in wall-bounded shear flow. Phys. Fluids A 5, 774777.
Choi, H., Jeon, W.-P. & Kim, J. 2008 Control of flow over a bluff body. Annu. Rev. Fluid Mech. 40, 113139.
Cole, J. D. 1968 Perturbation Methods in Applied Mathematics. Blaisdell.
Corrsin, S.1958 Local isotropy in turbulent shear flow. NACA Research Memo. 58B11.
Cvitanović, P. 1988 Invariant measurement of strange sets in terms of cycles. Phys. Rev. Lett. 61, 27292732.
Deardorff, J. W. 1970 A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41, 453480.
Dong, S., Lozano-Durán, A., Sekimoto, A. & Jiménez, J. 2017 Coherent structures in statistically stationary homogeneous shear turbulence. J. Fluid Mech. 816, 167208.
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.
Earman, J. & Norton, J. D. 1998 The wrath of Maxwell’s demon. Part I. From Maxwell to Szilard. Stud. Hist. Phil. Mod. Phys. 29, 435471.
Encinar, M. P. & Jiménez, J. 2016 Characterization of linear-like Orr bursts in fully turbulent channel flows. In Proc. Div. Fluid Dyn., p. L32.6. American Physical Society.
Farge, M. 1992 Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24, 395457.
Farrell, B. F. & Ioannou, P. J. 1996 Generalized stability theory. Part II: nonautonomous operators. J. Atmos. Sci. 53, 20412053.
Farrell, B. F. & Ioannou, P. J. 2012 Dynamics of streamwise rolls and streaks in turbulent wall-bounded shear flow. J. Fluid Mech. 708, 149196.
Farrell, B. F., Ioannou, P. J., Jiménez, J., Constantinou, N. C., Lozano-Durán, A. & Nikolaidis, M. 2016 A statistical state dynamics-based study of the structure and mechanism of large-scale motions in plane Poiseuille flow. J. Fluid Mech. 809, 290315.
Flores, O. & Jiménez, J. 2010 Hierarchy of minimal flow units in the logarithmic layer. Phys. Fluids 22, 071704.
Gasquet, C. & Witomski, P. 1998 Fourier Analysis and Applications. Springer.
Gaster, M., Kit, E. & Wygnanski, I. 1985 Large-scale structures in a forced turbulent mixing layer. J. Fluid Mech. 150, 2339.
Gayme, D. F., Mckeon, B. J., Papachristodoulou, A., Bamieh, B. & Doyle, J. C. 2010 A streamwise constant model of turbulence in plane Couette flow. J. Fluid Mech. 665, 99119.
Hall, P. & Sherwin, S. J. 2010 Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures. J. Fluid Mech. 661, 178205.
Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.
Herbert, T. 1976 Periodic secondary motions in a plane channel. In Proc. 5th Intl Conf. Numerical Methods Fluid Dyn. (ed. de Vooren, A. I. V. & Zandbergen, P. J.), pp. 235240. Springer.
Hoyas, S. & Jiménez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to Re 𝜏 = 2003. Phys. Fluids 18, 011702.
Hoyas, S. & Jiménez, J. 2008 Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Phys. Fluids 20, 101511.
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 467477.
Hwang, Y., Willis, A. P. & Cossu, C. 2016 Invariant solutions of minimal large-scale structures in turbulent channel flow for Re 𝜏 up to 1000. J. Fluid Mech. 802, R1.
Jiménez, J. 1987a Bifurcations and bursting in two-dimensional Poiseuille flow. Phys. Fluids 30, 36443646.
Jiménez, J. 1987b Coherent structures and dynamical systems. In Proc. CTR Summer School, pp. 323324. Stanford University.
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.
Jiménez, J. 2012 Cascades in wall-bounded turbulence. Annu. Rev. Fluid Mech. 44, 2745.
Jiménez, J. 2013a How linear is wall-bounded turbulence? Phys. Fluids 25, 110814.
Jiménez, J. 2013b Near-wall turbulence. Phys. Fluids 25, 101302.
Jiménez, J. 2015 Direct detection of linearized bursts in turbulence. Phys. Fluids 27, 065102.
Jiménez, J. 2016 Optimal fluxes and Reynolds stresses. J. Fluid Mech. 809, 585600.
Jiménez, J. & Hoyas, S. 2008 Turbulent fluctuations above the buffer layer of wall-bounded flows. J. Fluid Mech. 611, 215236.
Jiménez, J. & Kawahara, G. 2013 Dynamics of wall-bounded turbulence. In Ten Chapters in Turbulence (ed. Davidson, P. A., Kaneda, Y. & Sreenivasan, K. R.), pp. 221269. Cambridge University Press.
Jiménez, J., Kawahara, G., Simens, M. P., Nagata, M. & Shiba, M. 2005 Characterization of near-wall turbulence in terms of equilibrium and ‘bursting’ solutions. Phys. Fluids 17, 015105.
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.
Jiménez, J. & Simens, M. P. 2001 Low-dimensional dynamics of a turbulent wall flow. J. Fluid Mech. 435, 8191.
Kawahara, G., Uhlmann, M. & van Veen, L. 2012 The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44, 203225.
Kim, H. T., Kline, S. J. & Reynolds, W. C. 1971 The production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech. 50, 133160.
Kim, J., Moin, P. & Moser, R. D. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluids at very large Reynolds numbers. Dokl. Akad. Nauk. SSSR 30, 301305; Reprinted in Proc. R. Soc. Lond. A 434, (1991), pp. 9–13.
Kraichnan, R. H. 1971 Inertial range transfer in two- and three-dimensional turbulence. J. Fluid Mech. 47, 525535.
Kravchenko, A. G., Moin, P. & Moser, R. D. 1996 Zonal embedded grids for numerical simulations of wall-bounded turbulent flows. J. Comput. Phys. 127, 412423.
Landau, L. D. & Lifshitz, E. M. 1958 Statistical Mechanics, 2nd edn. Addison-Wesley.
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics, 2nd edn. Addison-Wesley.
Lee, M. & Moser, R. D. 2015 Direct numerical simulation of turbulent channel flow up to Re 𝜏 ≈ 5200. J. Fluid Mech. 774, 395415.
Lorenz, E. N. 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 20, 917928.
Lozano-Durán, A., Flores, O. & Jiménez, J. 2012 The three-dimensional structure of momentum transfer in turbulent channels. J. Fluid Mech. 694, 100130.
Lozano-Durán, A. & Jiménez, J. 2014a Effect of the computational domain on direct simulations of turbulent channels up to Re 𝜏 = 4200. Phys. Fluids 26, 011702.
Lozano-Durán, A. & Jiménez, J. 2014b Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascade. J. Fluid Mech. 759, 432471.
Lu, S. S. & Willmarth, W. W. 1973 Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech. 60, 481511.
Lumley, J. & Blossey, P. 1998 Control of turbulence. Annu. Rev. Fluid Mech. 30, 311327.
Malkus, W. V. R. 1956 Outline of a theory of turbulent shear flow. J. Fluid Mech. 1, 521539.
Marusic, I., Mathis, R. & Hutchins, N. 2010 Predictive model for wall-bounded turbulent flow. Science 329, 193196.
Marusic, I., Monty, J. P., Hultmark, M. & Smits, A. J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.
McKeon, B. J. 2017 The engine behind (wall) turbulence: perspectives on scale interactions. J. Fluid Mech. 817, P1.
McKeon, B. J. & Sharma, A. S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.
Mezić, I. 2013 Analysis of fluid flows via the spectral properties of the Koopman operator. Annu. Rev. Fluid Mech. 45, 357378.
Mizuno, Y. & Jiménez, J. 2011 Mean velocity and length-scales in the overlap region of wall-bounded turbulent flows. Phys. Fluids 23, 085112.
Mizuno, Y. & Jiménez, J. 2013 Wall turbulence without walls. J. Fluid Mech. 723, 429455.
Moin, P. & Kim, J. 1982 Numerical investigation of turbulent channel flow. J. Fluid Mech. 118, 341377.
Moin, P. & Moser, R. D. 1989 Characteristic-eddy decomposition of turbulence in a channel. J. Fluid Mech. 200, 471509.
Moisy, F. & Jiménez, J. 2004 Geometry and clustering of intense structures in isotropic turbulence. J. Fluid Mech. 513, 111133.
Nagata, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519527.
Oberlack, M. 2001 A unified approach for symmetries in plane parallel turbulent shear flows. J. Fluid Mech. 427, 299328.
Onsager, L. 1949 Statistical hydrodynamics. Nuovo Cimento Suppl. 6, 279286.
Orlandi, P. & Jiménez, J. 1994 On the generation of turbulent wall friction. Phys. Fluids 6, 634641.
Örlü, R., Fiorini, T., Segalini, A., Bellani, G., Talamelli, A. & Alfredsson, P. H. 2017 Reynolds stress scaling in pipe flow turbulence – first results from CICLoPE. Phil. Trans. R. Soc. Lond. A 375, 20160187.
Orr, W. M. 1907 The stability or instability of the steady motions of a perfect liquid, and of a viscous liquid. Part I: a perfect liquid. Proc. R. Irish Acad. A 27, 968.
Osawa, K. & Jiménez, J.2018 Intense structures of different momentum fluxes in turbulent channels. J. Phys.: Conf. Ser. (to appear).
Pearson, K. 1901 On lines and planes of closest fit to systems of points in space. Phil. Mag. 6, 559572.
Perry, A. E., Henbest, S. & Chong, M. S. 1986 A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165, 163199.
Piomelli, U. & Balaras, E. 2002 Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 34, 349374.
Pirozzoli, S., Bernardini, M. & Orlandi, P. 2014 Turbulence statistics in Couette flow at high Reynolds number. J. Fluid Mech. 758, 327343.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 1986 Numerical Recipes. Cambridge University Press.
Prigogine, I. 1978 Time, structure, and fluctuations. Science 201, 777785.
Pujals, G., García-Villalba, M., Cossu, C. & Depardon, S. 2009 A note on optimal transient growth in turbulent channel flow. Phys. Fluids 21, 015109.
Pumir, A. 1996 Turbulence in homogeneous shear flows. Phys. Fluids 8, 31123127.
Reynolds, W. C. & Tiederman, W. G. 1967 Stability of turbulent channel flow, with application to Malkus’ theory. J. Fluid Mech. 27, 253272.
Richardson, L. F. 1920 The supply of energy from and to atmospheric eddies. Proc. R. Soc. Lond. A 97, 354373.
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.
Rogallo, R. S.1981 Numerical experiments in homogeneous turbulence. NASA Tech. Memo 81315.
Rogers, M. M. & Moin, P. 1987 The structure of the vorticity field in homogeneous turbulent flows. J. Fluid Mech. 176, 3366.
Rowley, C. W. & Dawson, S. T. M. 2017 Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 49, 387417.
Ruelle, D. 1978 Statistical Mechanics: Thermodynamic Formalism. Addison-Wesley.
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.
Sekimoto, A., Dong, S. & Jiménez, J. 2016 Direct numerical simulation of statistically stationary and homogeneous shear turbulence and its relation to other shear flows. Phys. Fluids 28, 035101.
Sekimoto, A. & Jiménez, J. 2017 Vertically localised equilibrium solutions in large-eddy simulations of homogeneous shear flow. J. Fluid Mech. 827, 225249.
Shannon, C. E. & Weaver, W. 1949 The Mathematical Theory of Communication. University of Illinois Press.
Sillero, J.2014 High Reynolds numbers turbulent boundary layers. PhD thesis, U. Politécnica Madrid.
Sillero, J. A., Jiménez, J. & Moser, R. D. 2013 One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to 𝛿+ ≈ 2000. Phys. Fluids 25, 105102.
Sillero, J. A., Jiménez, J. & Moser, R. D. 2014 Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to 𝛿+ ≈ 2000. Phys. Fluids 26, 105109.
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. Q. Appl. Maths 45, 561590.
Smits, A. J., McKeon, B. J. & Marusic, I. 2011 High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.
Sreenivasan, K. R. 1991 Fractals and multifractals in fluid turbulence. Annu. Rev. Fluid Mech. 23, 539600.
Stauffer, D. & Aharony, A. 1994 Introduction to Percolation Theory. Taylor and Francis.
Stretch, D. D.1990 Automated pattern eduction from turbulent flow diagnostics. CTR Ann. Res. Briefs, pp. 145–157. Stanford University.
Swearingen, J. D. & Blackwelder, R. F. 1987 The growth and breakdown of streamwise vortices in the presence of a wall. J. Fluid Mech. 182, 255290.
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.
Toh, S. & Itano, T. 2005 Interaction between a large-scale structure and near-wall structures in channel flow. J. Fluid Mech. 524, 249262.
Townsend, A. A. 1961 Equilibrium layers and wall turbulence. J. Fluid Mech. 11, 97120.
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.
Tuerke, F. & Jiménez, J. 2013 Simulations of turbulent channels with prescribed velocity profiles. J. Fluid Mech. 723, 587603.
Voltaire, F. 1994 Dictionnaire Philosophique: Atomes. Oxford University Press.
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9, 883900.
Waleffe, F. 2001 Exact coherent structures in channel flow. J. Fluid Mech. 435, 93102.
Wallace, J. M., Eckelman, H. & Brodkey, R. S. 1972 The wall region in turbulent shear flow. J. Fluid Mech. 54, 3948.
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley.
Wiener, N. 1961 Cybernetics. MIT Press.
Wu, X., Moin, P., Wallace, J. M., Skarda, J., Lozano-Durán, A. & Hickey, J.-P. 2017 Transitional–turbulent spots and turbulent–turbulent spots in boundary layers. Proc. Natl Acad. Sci. USA 114, E5292E5299.
Wu, J., Zhou, Y., Lu, X. & Fan, M. 1999 Turbulent force as a diffusive field with vortical forces. Phys. Fluids 11, 627635.
Zare, A., Jovanović, M. R. & Georgiou, T. T. 2017 Colour of turbulence. J. Fluid Mech. 812, 636680.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed