## References

Ahlers, G., Bodenschatz, E. & He, X.2014 Logarithmic temperature profiles of turbulent Rayleigh–Bénard convection in the classical and ultimate state for a Prandtl number of 0.8. J. Fluid Mech. 758, 436–467.

Ahlers, G., Grossmann, S. & Lohse, D.2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81 (2), 503–537.

Baars, W. J., Hutchins, N. & Marusic, I.2017 Self-similarity of wall-attached turbulence in boundary layers. J. Fluid Mech. 823, R2.

Bailon-Cuba, J., Emran, M. S. & Schumacher, J.2010 Aspect ratio dependence of heat transfer and large-scale flow in turbulent convection. J. Fluid Mech. 655, 152–173.

Bodenschatz, E., Pesch, W. & Ahlers, G.2000 Recent developments in Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 32 (1), 709–778.

Chillà, F. & Schumacher, J.2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35 (7), 58.

Cierpka, C., Kästner, C., Resagk, C. & Schumacher, J.2019 On the challenges for reliable measurements of convection in large aspect ratio Rayleigh–Bénard cells in air and sulfur-hexafluoride. Exp. Therm. Fluid Sci. 109, 109841.

Deardorff, J. W. & Willis, G. E.1967 Investigation of turbulent thermal convection between horizontal plates. J. Fluid Mech. 28 (4), 675–704.

Drazin, P. G. & Reid, W. H.2004 Hydrodynamic Stability. Cambridge University Press.

Du Puits, R., Resagk, C. & Thess, A.2013 Thermal boundary layers in turbulent Rayleigh–Bénard convection at aspect ratios between 1 and 9. New J. Phys. 15 (1), 013040.

Emran, M. S. & Schumacher, J.2015 Large-scale mean patterns in turbulent convection. J. Fluid Mech. 776, 96–108.

Fitzjarrald, D. E.1976 An experimental study of turbulent convection in air. J. Fluid Mech. 73 (4), 693–719.

Green, G., Vlaykov, D. G., Mellado, J. P. & Wilczek, M.2020 Resolved energy budget of superstructures in Rayleigh–Bénard convection. *J. Fluid Mech.* (in press) doi:10.1017/jfm.2019.1008.

Hartlep, T., Tilgner, A. & Busse, F. H.2003 Large scale structures in Rayleigh–Bénard convection at high Rayleigh numbers. Phys. Rev. Lett. 91 (6), 064501.

Hartlep, T., Tilgner, A. & Busse, F. H.2005 Transition to turbulent convection in a fluid layer heated from below at moderate aspect ratio. J. Fluid Mech. 544, 309–322.

He, X., van Gils, D. P. M., Bodenschatz, E. & Ahlers, G.2014 Logarithmic spatial variations and universal *f* ^{-1} power spectra of temperature fluctuations in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 112 (17), 174501.

Hogg, J. & Ahlers, G.2013 Reynolds-number measurements for low-Prandtl-number turbulent convection of large-aspect-ratio samples. J. Fluid Mech. 725, 664–680.

Huisman, S. G., Van Der Veen, R. C., Sun, C. & Lohse, D.2014 Multiple states in highly turbulent Taylor–Couette flow. Nat. Commun. 5, 3820.

Hutchins, N. & Marusic, I.2007a Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 1–28.

Hutchins, N. & Marusic, I.2007b Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A 365 (1852), 647–664.

Kerr, R. M.2001 Energy budget in Rayleigh–Bénard convection. Phys. Rev. Lett. 87 (24), 244502.

Krug, D., Baars, W. J., Hutchins, N. & Marusic, I.2019 Vertical coherence of turbulence in the atmospheric surface layer: connecting the hypotheses of Townsend and Davenport. Boundary-Layer Meteorol. 172 (2), 199–214.

Lee, M. & Moser, R. D.2018 Extreme-scale motions in turbulent plane Couette flows. J. Fluid Mech. 842, 128–145.

Lohse, D. & Xia, K.-Q.2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335–364.

Marusic, I. & Monty, J. P.2019 Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech. 51, 49–74.

Morris, S. W., Bodenschatz, E., Cannell, D. S. & Ahlers, G.1993 Spiral defect chaos in large aspect ratio Rayleigh–Bénard convection. Phys. Rev. Lett. 71 (13), 2026.

Pandey, A., Scheel, J. D. & Schumacher, J.2018 Turbulent superstructures in Rayleigh–Bénard convection. Nat. Commun. 9 (1), 2118.

Parodi, A., von Hardenberg, J., Passoni, G., Provenzale, A. & Spiegel, E. A.2004 Clustering of plumes in turbulent convection. Phys. Rev. Lett. 92 (19), 194503.

Perry, A. E. & Chong, M. S.1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 173–217.

van der Poel, E. P., Ostilla-Mónico, R., Donners, J. & Verzicco, R.2015 A pencil distributed finite difference code for strongly turbulent wall-bounded flows. Comput. Fluids 116, 10–16.

Sakievich, P. J., Peet, Y. T. & Adrian, R. J.2016 Large-scale thermal motions of turbulent Rayleigh–Bénard convection in a wide aspect-ratio cylindrical domain. Intl J. Heat Mass Transfer 61, 183–196.

Shishkina, O., Stevens, R. J. A. M., Grossmann, S. & Lohse, D.2010 Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New J. Phys. 12, 075022.

Shishkina, O. & Wagner, C.2005 A fourth order accurate finite volume scheme for numerical simulations of turbulent Rayleigh–Bénard convection in cylindrical containers. C. R. Méc 333, 17–28.

Shishkina, O. & Wagner, C.2006 Analysis of thermal dissipation rates in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 546, 51–60.

Shishkina, O. & Wagner, C.2007 Local heat fluxes in turbulent Rayleigh–Bénard convection. Phys. Fluids 19, 085107.

Stevens, R. J. A. M., Blass, A., Zhu, X., Verzicco, R. & Lohse, D.2018 Turbulent thermal superstructures in Rayleigh–Bénard convection. Phys. Rev. Fluids 3 (4), 041501.

Stevens, R. J. A. M., Lohse, D. & Verzicco, R.2011 Prandtl and Rayleigh number dependence of heat transport in high Rayleigh number thermal convection. J. Fluid Mech. 688, 31–43.

Stevens, R. J. A. M., Verzicco, R. & Lohse, D.2010 Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection. J. Fluid Mech. 643, 495–507.

Sun, C., Ren, L.-Y., Song, H. & Xia, K.-Q.2005a Heat transport by turbulent Rayleigh–Bénard convection in 1 m diameter cylindrical cells of widely varying aspect ratio. J. Fluid Mech. 542, 165–174.

Sun, C., Ren, L.-Y., Song, H. & Xia, K.-Q.2005b Heat transport by turbulent Rayleigh–Bénard convection in 1 m diameter cylindrical cells of widely varying aspect ratio. J. Fluid Mech. 542, 165–174.

Togni, R., Cimarelli, A. & De Angelis, E.2015 Physical and scale-by-scale analysis of Rayleigh–Bénard convection. J. Fluid Mech. 782, 380–404.

Townsend, A. A.1976 The Structure of Turbulent Shear Flow. Cambridge University Press.

Verma, M. K.2018 Physics of Buoyant Flows: From Instabilities to Turbulence. World Scientific.

Verzicco, R. & Orlandi, P.1996 A finite-difference scheme for three-dimensional incompressible flow in cylindrical coordinates. J. Comput. Phys. 123, 402–413.

Von Hardenberg, J., Parodi, A., Passoni, G., Provenzale, A. & Spiegel, E. A.2008 Large-scale patterns in Rayleigh–Bénard convection. Phys. Lett. A 372 (13), 2223–2229.

Wang, Y., He, X. & Tong, P.2016 Boundary layer fluctuations and their effects on mean and variance temperature profiles in turbulent Rayleigh–Bénard convection. Phys. Rev. Fluids 1 (8), 082301.

Young, G. S., Kristovich, D. A. R., Hjelmfelt, M. R. & Foster, R. C.2002 Rolls, streets, waves, and more: a review of quasi-two-dimensional structures in the atmospheric boundary layer. Bull. Am. Meteorol. Soc. 83 (7), 997–1002.

Zhou, Q., Liu, B.-F., Li, C.-M. & Zhong, B.-C.2012 Aspect ratio dependence of heat transport by turbulent Rayleigh–Bénard convection in rectangular cells. J. Fluid Mech. 710, 260–276.

Zhu, X., Phillips, E., Arza, V. S., Donners, J., Ruetsch, G., Romero, J., Ostilla-Mónico, R., Yang, Y., Lohse, D., Verzicco, R. et al. 2018 AFiD-GPU: a versatile Navier–Stokes solver for wall-bounded turbulent flows on GPU clusters. Comput. Phys. Commun. 229, 199–210.