Skip to main content Accessibility help

Centrifugal instability in non-axisymmetric vortices

  • David Nagarathinam (a1), A. Sameen (a1) and Manikandan Mathur (a1)


We study the centrifugal instability of non-axisymmetric vortices in the presence of an axial flow ( $w$ ) and a background rotation ( ${\it\Omega}_{z}$ ) using the local stability approach. Analytically solving the local stability equations for an axisymmetric vortex with $w$ and ${\it\Omega}_{z}$ , growth rates for wave vectors that are periodic upon evolution around a closed streamline are calculated. The resulting sufficient criterion for centrifugal instability in an axisymmetric vortex is then heuristically extended to non-axisymmetric vortices and written in terms of integral quantities and their derivatives with respect to the streamfunction on a streamline. The new criterion for non-axisymmetric vortices, which converges to the exact criterion of Bayly (Phys. Fluids, vol. 31, 1988, pp. 56–64) in the absence of background rotation and axial flow, is validated by comparisons with numerically calculated growth rates for two different anticyclonic vortices: the Stuart vortex (specified by the concentration parameter ${\it\rho},~0<{\it\rho}\leqslant 1$ ) and the Taylor–Green vortex (specified by the aspect ratio $E,~0<E\leqslant 1$ ). With no axial velocity and finite background rotation, the criterion predicts a lower and an upper threshold of $|{\it\Omega}_{z}|$ between which centrifugal instability is present. We further demonstrate that the criterion represents an improvement over the criterion of Sipp & Jacquin (Phys. Fluids, vol. 12, 2000, pp. 1740–1748). Finally, in the presence of both axial velocity and background rotation, the criterion is shown to be accurate for large enough ${\it\rho}$ and  $E$ .


Corresponding author

Email address for correspondence:


Hide All
Bayly, B. J. 1988 Three-dimensional centrifugal-type instabilities in inviscid two-dimensional flows. Phys. Fluids 31, 5664.
Billant, P. & Gallaire, F. 2005 Generalized Rayleigh criterion for non-axisymmetric centrifugal instabilities. J. Fluid Mech. 542, 365379.
Billant, P. & Gallaire, F. 2013 A unified criterion for the centrifugal instabilities of vortices and swirling jets. J. Fluid Mech. 734, 535.
Eckhoff, K. S. 1984 A note on the instability of columnar vortices. J. Fluid Mech. 145, 417421.
Gallaire, F. & Chomaz, J. M. 2003a Instability mechanisms in swirling flows. Phys. Fluids 15, 26222639.
Gallaire, F. & Chomaz, J. M. 2003b Mode selection in swirling jet experiments: a linear stability analysis. J. Fluid Mech. 494, 223253.
Godeferd, F. S., Cambon, C. & Leblanc, S. 2001 Zonal approach to centrifugal, elliptic and hyperbolic instabilities in Stuart vortices with external rotation. J. Fluid Mech. 449, 137.
Hopfinger, E. J. & van Heijst, G. J. F. 1993 Vortices in rotating fluids. Annu. Rev. Fluid Mech. 25, 241289.
Kloosterziel, R. C. & van Heijst, G. J. F. 1991 An experimental study of unstable barotropic vortices in a rotating fluid. J. Fluid Mech. 223, 124.
Leblanc, S. & Cambon, C 1998 Effects of the Coriolis force on the stability of Stuart vortices. J. Fluid Mech. 356, 353379.
Leibovich, S. & Stewartson, K. 1983 A sufficient condition for the instability of columnar vortices. J. Fluid Mech. 126, 335356.
Lifschitz, A. & Hameiri, E. 1991 Local stability conditions in fluid dynamics. Phys. Fluids A 3, 26442651.
Mathur, M., Ortiz, S., Dubos, T. & Chomaz, J. M. 2014 Effects of an axial flow on the centrifugal, elliptic and hyperbolic instabilities in Stuart vortices. J. Fluid Mech. 758, 565585.
Mutabazi, I., Normand, C. & Wesfreid, J. E. 1992 Gap size effects on centrifugally and rotationally driven instabilities. Phys. Fluids A 4, 11991205.
Potylitsin, P. G. & Peltier, W. R. 1999 Three-dimensional destabilization of Stuart vortices: the influence of rotation and ellipticity. J. Fluid Mech. 387, 205226.
Potylitsin, P. G. & Peltier, W. R. 2003 On the nonlinear evolution of columnar vortices in a rotating environment. Geophys. Astrophys. Fluid Dyn. 97, 365391.
Rayleigh, Lord 1917 On the dynamics of revolving fluids. Proc. R. Soc. Lond. A 93, 148154.
Sipp, D. & Jacquin, L. 1998 Elliptic instability in two-dimensional flattened Taylor–Green vortices. Phys. Fluids 10, 839849.
Sipp, D. & Jacquin, L. 2000 Three-dimensional centrifugal-type instabilities of two-dimensional flows in rotating systems. Phys. Fluids 12, 17401748.
Sipp, D., Lauga, E. & Jacquin, L. 1999 Vortices in rotating systems: centrifugal, elliptic and hyperbolic type instabilities. Phys. Fluids 11, 37163728.
Stuart, J. T. 1967 On finite amplitude oscillations in laminar mixing layers. J. Fluid Mech. 29, 417440.
Taylor, G. I. & Green, A. E. 1937 Mechanism of the production of small eddies from large ones. Proc. R. Soc. Lond. A 158, 499521.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed