Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T18:01:32.720Z Has data issue: false hasContentIssue false

Cavitation bubble dynamics in a liquid gap of variable height

Published online by Cambridge University Press:  21 June 2011

SILVESTRE ROBERTO GONZALEZ-AVILA
Affiliation:
Nanyang Technological University, School of Physical and Mathematical Sciences, Division of Physics and Applied Physics, 21 Nanyang Link, Singapore637371
EVERT KLASEBOER
Affiliation:
Institute of High Performance Computing, Fusionopolis, 1 Fusionopolis Way, 16–16 Connexis, Singapore138632
BOO CHEONG KHOO
Affiliation:
Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore119260
CLAUS-DIETER OHL*
Affiliation:
Nanyang Technological University, School of Physical and Mathematical Sciences, Division of Physics and Applied Physics, 21 Nanyang Link, Singapore637371
*
Email address for correspondence: cdohl@ntu.edu.sg

Abstract

We report on an experimental study of cavitation bubble dynamics within sub-millimetre-sized narrow gaps. The gap height is varied, while the position of the cavitation event is fixed with respect to the lower gap wall. Four different sizes of laser-induced cavitation bubbles are studied using high-speed photography of up to 430,000 frames per second. We find a strong influence of the gap height, H, on the bubble dynamics, in particular on the collapse scenario. Also, similar bubble dynamics was found for the same non-dimensional gap height η = H/Rx, where Rx is the maximum radius in the horizontal direction. Three scenarios are observed: neutral collapse at the gap centre, collapse onto the lower wall and collapse onto the upper wall. For intermediate gap height the bubble obtains a conical shape 1.4 < η < 7.0. For large distances, η > 7.0, the bubble no longer feels the presence of the upper wall and collapses hemispherically. The collapse time increases with respect to the expansion time for decreasing values of η. Due to the small scales involved, the final stage of the bubble collapse could not be resolved temporally and numerical simulations were performed to elucidate the details of the flow. The simulations demonstrate high-speed jetting towards the upper and lower walls and complex bubble splitting for neutral collapses.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benjamin, T. B. & Ellis, A. T. 1966 Collapse of cavitation bubbles and pressure thereby produced against solid boundaries. Phil. Trans. R. Soc. Lond. A 260, 221240.Google Scholar
Blake, J. R. & Gibson, D. C. 1987 Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19, 99123.CrossRefGoogle Scholar
Borkent, B. M., Gekle, S., Prosperetti, A. & Lohse, D. 2009 Nucleation threshold and deactivation mechanisms of nanoscopic cavitation nuclei. Phys. Fluids 21, 102003.CrossRefGoogle Scholar
Chahine, G. L. 1982 Experimental and asymptotic study of non-spherical bubble collapse. Appl. Sci. Res. 38, 187197.CrossRefGoogle Scholar
Chen, Y. H., Chu, H. Y. & I, L. 2006 Interaction and fragmentation of pulsed laser induced microbubbles in a narrow gap. Phys. Rev. Lett. 96, 034505.CrossRefGoogle Scholar
Chen, Y. L. & Israelachvili, J. 1991 New mechanism of cavitation damage. Science 252, 11571160.CrossRefGoogle Scholar
Cole, R. H. 1948 Underwater Explosions. Princeton University Press.CrossRefGoogle Scholar
Dijkink, R. & Ohl, C. D. 2008 Laser-induced cavitation based micropump. Lab on a Chip 8, 16761681.CrossRefGoogle ScholarPubMed
Dowson, D. & Taylor, C. M. 1979 Cavitation in bearings. Annu. Rev. Fluid Mech. 11, 3566.CrossRefGoogle Scholar
Ishida, H., Nuntadusit, C., Kimoto, H., Nakagawa, T. & Yamamoto, T. 2001 Cavitation bubble behavior near solid boundaries. In CAV 2001: Fourth Intl Symp. on Cavitation, 20–23 June 2001, California Institute of Technology, Pasadena, CA, USA (CAV2001:sessionA5.003).Google Scholar
Kasolang, S. & Dwyer-Joyce, R. S. 2008 Observations of film thickness profile and cavitation around a journal bearing circumference. Tribol. Trans. 51, 231242.CrossRefGoogle Scholar
Kim, W., Kim, T. H., Choi, J. & Kim, H. Y. 2009 Mechanism of particle removal by megasonic waves. Appl. Phys. Lett. 94, 081908.CrossRefGoogle Scholar
Klaseboer, E., Fong, S. W., Turangan, C. K., Khoo, B. C., Szeri, A. J., Calvisi, M. L., Sankin, G. N. & Zhong, P. 2007 Interaction of lithotripter shockwaves with single inertial cavitation bubbles. J. Fluid Mech. 593, 3356.CrossRefGoogle ScholarPubMed
Krefting, D., Mettin, R. & Lauterborn, W. 2004 High-speed observation of acoustic cavitation erosion in multibubble systems. Ultrason. Sonochem. 11, 119123.CrossRefGoogle ScholarPubMed
Kucherenko, V. V. & Shamko, V. V. 1986 Dynamics of electric-explosion cavities between two solid parallel walls. J. Appl. Mech. Tech. Phys. 27, 112115.CrossRefGoogle Scholar
Lauterborn, W. 1982 Cavitation bubble dynamics – new tools for an intricate problem. Appl. Sci. Res. 38, 165178.CrossRefGoogle Scholar
Le Gac, S., Zwaan, E., Van Den Berg, A. & Ohl, C. D. 2007 Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement. Lab on a Chip 7, 16661672.CrossRefGoogle Scholar
Lee, M., Klaseboer, E. & Khoo, B. C. 2007 On the boundary integral method for the rebounding bubble. J. Fluid Mech. 570, 407429.CrossRefGoogle Scholar
Lindau, O. & Lauterborn, W. 2003 Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J. Fluid Mech. 479, 327348.CrossRefGoogle Scholar
Lim, K. Y., Quinto-SU, P. A., Klaseboer, E., Khoo, B. C., Venugopalan, V. & Ohl, C. D. 2010 Nonspherical laser-induced cavitation bubbles. Phys. Rev. E 81, 016308.Google ScholarPubMed
Ohl, C. D., Arora, M., Ikink, R., De Jong, N., Versluis, M., Delius, M. & Lohse, D. 2006 Sonoporation from jetting cavitation bubbles. Biophys. J. 91, 42854295.CrossRefGoogle ScholarPubMed
Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.CrossRefGoogle Scholar
Quinto-Su, P. A., Huang, X. H., Gonzalez-Avila, S. R., Wu, T. & Ohl, C. D. 2010 Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles. Phys. Rev. Lett. 104, 014501.CrossRefGoogle ScholarPubMed
Quinto-Su, P. A., Lim, K. Y. & Ohl, C. D. 2009 Cavitation bubble dynamics in microfluidic gaps of variable height. Phys. Rev. E 80, 047301.Google ScholarPubMed
Reynolds, O. 1886 On the theory of lubrication and its applications to Mr Beauchamp's experiments, including an experimental determination of the viscosity of olive oil. Reprinted from the Phil. Trans. R. Soc., Part I; see also Papers on Mechanical and Physical Subjects, Cambridge University Press, Volume II, 1901 for a reprint.Google Scholar
Shima, A. & Nakajima, K. 1977 Collapse of a non-hemispherical bubble attached to a solid wall. J. Fluid Mech. 80, 369391.CrossRefGoogle Scholar
Sun, C., Can, E., Dijkink, R., Lohse, D. & Prosperetti, A. 2009 Growth and collapse of a vapour bubble in a microtube: the role of thermal effects. J. Fluid Mech. 632, 516.CrossRefGoogle Scholar
Tong, R. P., Schiffers, W. P., Shaw, S. J., Blake, J. R. & Emmony, D. C. 1999 The role of ‘splashing’ in the collapse of a laser-generated cavity near a rigid boundary. J. Fluid Mech. 380, 339361.CrossRefGoogle Scholar
Vogel, A. & Lauterborn, W. 1988 Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries. J. Acoust. Soc. Am. 84, 719731.CrossRefGoogle Scholar
Vogel, A., Lauterborn, W. & Timm, R. 1989 Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 206, 299338.CrossRefGoogle Scholar
Wang, Q. X., Yeo, K. S., Khoo, B. C. & Lam, K. Y. 1996 Nonlinear interaction between gas bubble and free surface. Comput. Fluids 25, 607628.CrossRefGoogle Scholar
You, L. C., Kuhl, T. & Israelachvili, J. 1992. Mechanism of cavitation damage in thin liquid-films-collapse-damage vs inception damage. Wear 153, 3151.Google Scholar
Zwaan, E., Le Gac, S., Tsuji, K. & Ohl, C. D. 2007 Controlled cavitation in microfluidic systems. Phys. Rev. Lett. 98, 254501.CrossRefGoogle ScholarPubMed
Supplementary material: File

Gonzalez-Avila supplementary material

Supplementary figures

Download Gonzalez-Avila supplementary material(File)
File 157.7 KB