Skip to main content Accessibility help

Capillary hysteresis in sloshing dynamics: a weakly nonlinear analysis

  • Francesco Viola (a1), P.-T. Brun (a1) (a2) and François Gallaire (a1)


The sloshing of water waves in a vertical cylindrical tank is an archetypal damped oscillator in fluid mechanics. The wave frequency is traditionally derived in the potential flow limit (Lamb, Hydrodynamics, Cambridge University Press, 1932), and the damping rate results from the combined effects of the viscous dissipation at the wall, in the bulk and at the free surface (Case & Parkinson, J. Fluid Mech., vol. 2, 1957, pp. 172–184). Still, the classic theoretical prediction accounting for these effects significantly underestimates the damping rate when compared to careful laboratory experiments (Cocciaro et al., J. Fluid Mech., vol. 246, 1993, pp. 43–66). Specifically, theory provides a unique value for the damping rate, while experiments reveal that the damping increases as the sloshing amplitude decreases. Here, we investigate theoretically the effects of capillarity at the contact line on the decay time of capillary–gravity waves. To this end, we marry a model for the inviscid waves to a nonlinear empiric law for the contact line that incorporates contact angle hysteresis. The resulting system of equations is solved by means of a weakly nonlinear analysis using the method of multiple scales. Capillary effects have a dramatic influence on the calculated damping rate, especially when the sloshing amplitude gets small: this nonlinear interfacial term increases in the limit of zero wave amplitude. In contrast to viscous damping, where the wave motion decays exponentially, the contact angle hysteresis can act as Coulomb solid friction, thus yielding the arrest of the contact line in a finite time.


Corresponding author

Email address for correspondence:


Hide All

Present address: PoF, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.



Hide All
Benjamin, T. B. & Ursell, F. 1954 The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A 225 (1163), 505515.
Case, K. M. & Parkinson, W. C. 1957 Damping of surface waves in an incompressible liquid. J. Fluid Mech. 2 (2), 172184.
Cocciaro, B., Faetti, S. & Nobili, M. 1991 Capillarity effects on surface gravity waves in a cylindrical container: wetting boundary conditions. J. Fluid Mech. 231, 325343.
Cocciaro, B., Faetti, S., Nobili, M. & Festa, C. 1993 Experimental investigation of capillarity effects on surface gravity waves: non-wetting boundary conditions. J. Fluid Mech. 246, 4366.
Cox, R. G. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169194.
Dussan, E. B. 1979 On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu. Rev. Fluid Mech. 11 (1), 371400.
Eral, H. B., ’t Mannetje, J. C. M. & Oh, J. M. 2013 Contact angle hysteresis: a review of fundamentals and applications. Colloid Polym. Sci. 291 (2), 247260.
de Gennes, P.-G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57 (3), 827863.
de Gennes, P.-G., Brochard-Wyart, F. & Quéré, D. 2002 Gouttes, Bulles, Perles et Ondes. Belin.
Heinrichs, W. 2004 Spectral collocation schemes on the unit disc. J. Comput. Phys. 199 (1), 6686.
Hocking, L. M. 1987 The damping of capillary–gravity waves at a rigid boundary. J. Fluid Mech. 179, 253266.
Jiang, L., Perlin, M. & Schultz, W. W. 2004 Contact-line dynamics and damping for oscillating free surface flows. Phys. Fluids 16 (3), 748758.
Keulegan, G. H. 1959 Energy dissipation in standing waves in rectangular basins. J. Fluid Mech. 6 (1), 3350.
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.
Le Grand, N., Daerr, A. & Limat, L. 2005 Shape and motion of drops sliding down an inclined plane. J. Fluid Mech. 541, 293315.
Leger, L. & Joanny, J. F. 1992 Liquid spreading. Rep. Prog. Phys. 55 (4), 431.
Miles, J. W. 1967 Surface-wave damping in closed basins. Proc. R. Soc. Lond. A 297, 459475.
Nayfeh, A. H. 2008 Perturbation Methods. Wiley.
Noblin, X., Buguin, A. & Brochard-Wyart, F. 2004 Vibrated sessile drops: transition between pinned and mobile contact line oscillations. Eur. Phys. J. E 14 (4), 395404.
Puthenveettil, B. A., Senthilkumar, V. K. & Hopfinger, E. J. 2013 Motion of drops on inclined surfaces in the inertial regime. J. Fluid Mech. 726, 2661.
Rio, E., Daerr, A., Andreotti, B. & Limat, L. 2005 Boundary conditions in the vicinity of a dynamic contact line: experimental investigation of viscous drops sliding down an inclined plane. Phys. Rev. Lett. 94 (2), 024503.
Sommariva, A. 2013 Fast construction of Fejér and Clenshaw–Curtis rules for general weight functions. Comput. Math. Applics. 65 (4), 682693.
Stuart, J. T. 1960 On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. Part 1. The basic behaviour in plane Poiseuille flow. J. Fluid Mech. 9 (3), 353370.
Ursell, F. 1952 Edge waves on a sloping beach. Proc. R. Soc. Lond. A 214, 7997.
Viola, F., Arratia, C. & Gallaire, F. 2016a Mode selection in trailing vortices: harmonic response of the non-parallel batchelor vortex. J. Fluid Mech. 790, 523552.
Viola, F., Brun, P.-T., Dollet, B. & Gallaire, F. 2016b Foam on troubled water: capillary induced finite-time arrest of sloshing waves. Phys. Fluids 28 (9), 091701.
Voinov, O. V. 1976 Hydrodynamics of wetting. Fluid Dyn. 11 (5), 714721.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Capillary hysteresis in sloshing dynamics: a weakly nonlinear analysis

  • Francesco Viola (a1), P.-T. Brun (a1) (a2) and François Gallaire (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.