Skip to main content Accessibility help

Bubble entrainment and liquid–bubble interaction under unsteady breaking waves

  • Morteza Derakhti (a1) and James T. Kirby (a1)


Liquid–bubble interaction, especially in complex two-phase bubbly flow under breaking waves, is still poorly understood. In the present study, we perform a large-eddy simulation using a Navier–Stokes solver extended to incorporate entrained bubble populations, using an Eulerian–Eulerian formulation for a polydisperse bubble phase. The volume-of-fluid method is used for free-surface tracking. We consider an isolated unsteady deep water breaking event generated by a focused wavepacket. Bubble contributions to dissipation and momentum transfer between the water and air phases are considered. The model is shown to predict free-surface evolution, mean and turbulent velocities, and integral properties of the entrained dispersed bubbles fairly well. We investigate turbulence modulation by dispersed bubbles as well as shear- and bubble-induced dissipation, in both spilling and plunging breakers. We find that the total bubble-induced dissipation accounts for more than 50 % of the total dissipation in the breaking region. The average dissipation rate per unit length of breaking crest is usually written as $b{\it\rho}g^{-1}c_{b}^{5}$ , where ${\it\rho}$ is the water density, $g$ is the gravitational acceleration and $c_{b}$ is the phase speed of the breaking wave. The breaking parameter, $b$ , has been poorly constrained by experiments and field measurements. We examine the time-dependent evolution of $b$ for both constant-steepness and constant-amplitude wavepackets. A scaling law for the averaged breaking parameter is obtained. The exact two-phase transport equation for turbulent kinetic energy (TKE) is compared with the conventional single-phase transport equation, and it is found that the former overpredicts the total subgrid-scale dissipation and turbulence production by mean shear during active breaking. All of the simulations are also repeated without the inclusion of a dispersed bubble phase, and it is shown that the integrated TKE in the breaking region is damped by the dispersed bubbles by approximately 20 % for a large plunging breaker to 50 % for spilling breakers. In the plunging breakers, the TKE is damped slightly or even enhanced during the initial stage of active breaking.


Corresponding author

Email address for correspondence:


Hide All
Baldy, S. 1993 A generation-dispersion model of ambient and transient bubbles in the close vicinity of breaking waves. J. Geophys. Res. 98, 1827718293.
Banner, M. L. & Peregrine, D. H. 1993 Wave breaking in deep water. Annu. Rev. Fluid Mech. 25, 373397.
Blenkinsopp, C. E. & Chaplin, J. R. 2007 Void fraction measurements in breaking waves. Proc. R. Soc. A 463, 31513170.
Carrica, P. M., Drew, D., Bonetto, F. & Lahey, R. T. 1999 A polydisperse model for bubbly two-phase flow around a surface ship. Intl J. Multiphase Flow 25, 257305.
Chen, G., Kharif, Ch., Zaleski, S. & Li, J. 1999 Two-dimensional Navier–Stokes simulation of breaking waves. Phys. Fluids 11, 121133.
Christensen, E. D. 2006 Large eddy simulation of spilling and plunging breakers. Coast. Engng 53, 463485.
Christensen, E. D. & Deigaard, R. 2001 Large eddy simulation of breaking waves. Coast. Engng 42, 5386.
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops and Particles. Academic Press.
Deane, G. B. & Stokes, M. D. 2002 Scale dependence of bubble creation mechanisms in breaking waves. Nature 418, 839844.
Derakhti, M. & Kirby, J. T.2014 Bubble entrainment and liquid–bubble interaction under unsteady breaking waves. Tech. Rep. CACR-14-06, Center for Applied Coastal Research, Available at:
Drazen, D. A. & Melville, W. K. 2009 Turbulence and mixing in unsteady breaking surface waves. J. Fluid Mech. 628, 85119.
Drazen, D. A., Melville, W. K. & Lenain, L. 2008 Inertial scaling of dissipation in unsteady breaking waves. J. Fluid Mech. 611, 307332.
Drew, D. 1983 Mathematical modeling of two-phase flow. Annu. Rev. Fluid Mech. 15, 261291.
Duncan, J. H. 1983 The breaking and non-breaking wave resistance of a two-dimensional hydrofoil. J. Fluid Mech. 126, 507520.
Duncan, J. H. 2001 Spilling breakers. Annu. Rev. Fluid Mech. 33, 519547.
Fox, R. O. 2012 Large-eddy-simulation tools for multiphase flows. Annu. Rev. Fluid Mech. 44, 4776.
Garrett, C., Li, M. & Farmer, D. 2000 The connection between bubble size spectra and energy dissipation rates in the upper ocean. J. Phys. Oceanogr. 30, 21632171.
Gemmrich, J. R. & Farmer, D. M. 2004 Near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr. 34, 10671086.
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3, 17601765.
Iafrati, A. 2009 Numerical study of the effects of the breaking intensity on wave breaking flows. J. Fluid Mech. 622, 371411.
Iafrati, A. 2011 Energy dissipation mechanisms in wave breaking processes: spilling and highly aerated plunging breaking events. J. Geophys. Res. 116, C07024.
Kiger, K. T. & Duncan, J. H. 2012 Air-entrainment mechanisms in plunging jets and breaking waves. Annu. Rev. Fluid Mech. 44, 563596.
Kirby, J. T., Ma, G., Derakhti, M. & Shi, F. 2012 Numerical investigation of turbulent bubbly flow under breaking waves. In Proceedings of 33rd Int. Conf. Coastal Eng., p. waves-66. Santander.
Lakehal, D. & Liovic, P. 2011 Turbulence structure and interaction with steep breaking waves. J. Fluid Mech. 674, 522577.
Lakehal, D., Smith, B. L. & Milelli, M. 2002 Large-eddy simulation of bubbly turbulent shear flows. J. Turbul. 3, N25.
Lamarre, E. & Melville, W. K. 1991 Air entrainment and dissipation in breaking waves. Nature 351, 469472.
Lamarre, E. & Melville, W. K. 1994 Void-fraction measurements and sound-speed fields in bubble plumes generated by breaking waves. J. Acoust. Soc. Am. 95, 13171328.
Lance, M. & Bataille, J. 1991 Turbulence in the liquid phase of a uniform bubbly air–water flow. J. Fluid Mech. 222, 95118.
Lilly, D. K. 1992 A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids 4, 633635.
Loewen, M. R., O’Dor, M. A. & Skafel, M. G. 1996 Bubbles entrained by mechanically generated breaking waves. J. Geophys. Res. 101, 2075920769.
Lubin, P., Vincent, S., Abadie, S. & Caltagirone, J. 2006 Three-dimensional large eddy simulation of air entrainment under plunging breaking waves. Coast. Engng 53 (8), 631655.
Ma, G.2012 Multiscale numerical study of turbulent flow and bubble entrainment in the surf zone. PhD thesis, University of Delaware, Newark DE.
Ma, G., Shi, F. & Kirby, J. T. 2011 A polydisperse two-fluid model for surf zone bubble simulation. J. Geophys. Res. 116, C05010.
Martínez-Bazán, C., Rodríguez-Rodríguez, J., Deane, G. B., Montañés, J. L. M. & Lasheras, J. C. 2010 Considerations on bubble fragmentation models. J. Fluid Mech. 661, 159177.
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883889.
Melville, W. K. 1994 Energy dissipation by breaking waves. J. Phys. Oceanogr. 24, 20412049.
Melville, W. K. 1996 The role of surface-wave breaking in air–sea interaction. Annu. Rev. Fluid Mech. 28, 279321.
Moraga, F. J., Carrica, P. M., Drew, D. A. & Lahey, R. T. Jr 2008 A sub-grid air entrainment model for breaking bow waves and naval surface ships. Comput. Fluids 37, 281298.
Perlin, M., Choi, W. & Tian, Zh. 2012 Breaking waves in deep and intermediate waters. Annu. Rev. Fluid Mech. 45, 115145.
Phillips, O. M. 1985 Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech. 156, 505531.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Rapp, R. J. & Melville, W. K. 1990 Laboratory measurements of deep-water breaking waves. Phil. Trans. R. Soc. A 331, 735800.
Rider, W. J. & Kothe, D. B. 1998 Reconstructing volume tracking. J. Comput. Phys. 141, 112152.
Rojas, G. & Loewen, M. R. 2007 Fiber-optic probe measurements of void fraction and bubble size distributions beneath breaking waves. Exp. Fluids 43, 895906.
Rojas, G. & Loewen, M. R. 2010 Void fraction measurements beneath plunging and spilling breaking waves. J. Geophys. Res. 115, C8.
Saruwatari, A., Watanabe, Y. & Ingram, D. M. 2009 Scarifying and fingering surfaces of plunging jets. Coast. Engng 56, 11091122.
Sato, Y. & Sekoguchi, K. 1975 Liquid velocity distribution in two-phase bubble flow. Intl J. Multiphase Flow 2, 7995.
Shen, L. & Yue, D. K. P. 2001 Large-eddy simulation of free-surface turbulence. J. Fluid Mech. 440, 75116.
Shi, F., Kirby, J. T. & Ma, G. 2010 Modeling quiescent phase transport of air bubbles induced by breaking waves. Ocean Model. 35, 105117.
Smagorinsky, J. 1963 General circulation experiments with the primitive equations. Mon. Weath. Rev. 91, 99164.
Song, Ch. & Sirviente, A. 2004 A numerical study of breaking waves. Phys. Fluids 16, 26492667.
Vremen, B., Geurts, B. & Kuerten, H. 1997 Large-eddy simulation of the turbulent mixing layer. J. Fluid Mech. 339, 357390.
Watanabe, Y., Saeki, H. & Hosking, R. J. 2005 Three-dimensional vortex structures under breaking waves. J. Fluid Mech. 545, 291328.
Zang, Y., Street, R. L. & Koseff, J. R. 1993 A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids A 5, 31863196.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Bubble entrainment and liquid–bubble interaction under unsteady breaking waves

  • Morteza Derakhti (a1) and James T. Kirby (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed